Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomater Appl ; 35(3): 405-421, 2020 09.
Article in English | MEDLINE | ID: mdl-32571173

ABSTRACT

Although, the excellent level of success of titanium surfaces is based on the literature, there are some biological challenges such as unfavorable metabolic conditions or regions of poor bone quality where greater surface bioactivity is desired. Seeking better performance, we hypothesized that silica-based coating via sol-gel route with immersion in potassium hydroxide basic solution induces acceleration of bone mineralization. This in vitro experimental study coated titanium surfaces with bioactive glass synthesized by route sol-gel via hydrolysis and condensation of chemical alkoxide precursor, tetraethylorthosilicate (TEOS) and/or deposition of chemical compound potassium hydroxide (KOH) to accelerate bone apposition. The generated surfaces titanium(T), titanium with potassium hydroxide deposition (T + KOH), titanium with bioactive glass deposition synthesized by sol-gel route via tetraethylorthosilicate hydrolysis (TEOS), titanium with bioactive glass deposition synthesized by sol-gel route via tetraethylorthosilicate hydrolysis with potassium hydroxide deposition (TEOS + KOH) were characterized by 3D optical profilometry, scanning electron microscopy (SEM), transmission electron microscopy (TEM), contact angle by the sessile drop method, x-ray excited photoelectron spectroscopy (XPS) and energy dispersive x-ray spectrometer (EDX). The addition of the KOH group on the pure titanium (T) or bioactive glass (TEOS) surfaces generated a tendency for better results for mineralization. Groups covered with bioactive glass (TEOS, TEOS + KOH) tended to outperform even groups with titanium substrate (T, T + KOH). The addition of both, bioactive glass and KOH, in a single pure titanium substrate yielded the best results for the mineralization process.


Subject(s)
Coated Materials, Biocompatible/chemistry , Gels/chemistry , Hydroxides/chemistry , Potassium Compounds/chemistry , Silicon Dioxide/chemistry , Titanium/chemistry , Animals , Calcification, Physiologic , Cell Adhesion , Cell Proliferation , Coated Materials, Biocompatible/metabolism , Dental Implantation , Humans , Mice , Osteogenesis , Silanes/chemistry , Surface Properties , Titanium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...