Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Chemosphere ; 324: 138278, 2023 May.
Article in English | MEDLINE | ID: mdl-36878364

ABSTRACT

The excessive use of pesticides and the demand for environmentally friendly compounds have driven the focus to detailed studies of the environmental destination of these compounds. Degradation by hydrolysis of pesticides, when released into the soil, can result in the formation of metabolites with potentially adverse effects on the environment. Moving in this direction, we investigated the mechanism of acid hydrolysis of the herbicide ametryn (AMT) and predicted the toxicities of metabolites through experimental and theoretical approaches. The formation of ionized hydroxyatrazine (HA) occurs with the release of the SCH3- group and the addition of H3O+ to the triazine ring. The tautomerization reactions privileged the conversion of AMT into HA. Furthermore, the ionized HA is stabilized by an intramolecular reaction that provides the molecule in two tautomeric states. Experimentally, the hydrolysis of AMT was obtained under acidic conditions and at room temperature with HA as the main product. HA was isolated in a solid state through its crystallization as organic counterions. The mechanism of conversion of AMT to HA and the experimental investigation of the reaction kinetics allowed us to determine the dissociation of CH3SH as the rate-controlling step in the degradation process that culminates in a half-life between 7 and 24 months under typical acid soil conditions of the Brazilian Midwest - region with strong agricultural and livestock vocation. The keto and hydroxy metabolites showed substantial thermodynamic stability and a decrease in toxicity compared to AMT. We hope that this comprehensive study will support the understanding of the degradation of s-triazine-based pesticides.


Subject(s)
Herbicides , Triazines , Hydrolysis , Molecular Structure , Kinetics , Triazines/chemistry , Herbicides/toxicity , Soil
2.
RSC Adv ; 12(53): 34746-34759, 2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36545583

ABSTRACT

Biodiesel production is one of the promising strategies to reduce diesel consumption and an important contribution to climate change. However, biodiesel stability remains a challenging problem in biofuel use in the global energy matrix. In this context, organic additives have been investigated to minimize these problems and reduce harmful emissions to comply with fuel requirement standards. In this study, we discuss a comprehensive structural description, a behavior of B15 [85% volume of diesel and 15% volume of biodiesel (B100)] stability in the presence of antioxidants (chalcone analogues), and a theoretical calculation to pave the way for clarifying and expanding the potential of title compounds as an antioxidant additive for diesel-biodiesel blends. Finally, a systematic description of the oxidation stability was undertaken using a specialized machine learning computational pySIRC platform.

3.
Chemosphere ; 278: 130401, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33839382

ABSTRACT

Pesticides are chemical compounds widely used to combat pests in crops, and they thus play a key role in agricultural production. However, due to their persistence in aquatic environments, even at low concentrations, their use has been considered an environmental problem and caused concern regarding the adverse effects on human health. This paper reports, for the first time, the mechanisms, kinetics, and an evaluation of the toxicity of picloram degradation initiated by OH radicals in the aqueous environment using quantum chemistry and computational toxicology calculations. The rate constants are calculated using a combination of formulations derived from the Transition State Theory in a realistic temperature range (250-310 K). The results indicate that the two favorable pathways (R1 and R5) of OH -based reactions occur by addition to the pyridine ring. The calculated rate constant at 298 K is compared with the overall second-order reaction rate constant, quantified herein experimentally via the competition kinetics method and data available in the literature showing an excellent agreement. The toxicity assessment and a photolysis study provide important information: i) picloram and the majority of degradation products are estimated as harmful; however, ii) these compounds can suffer photolysis in sunlight. The results of the present study can help understand the mechanism of picloram, also providing important clues regarding risk assessment in aquatic environments as well as novel experimental information.


Subject(s)
Hydroxyl Radical , Water Pollutants, Chemical , Humans , Kinetics , Oxidation-Reduction , Picloram , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/toxicity
4.
J Org Chem ; 85(19): 12614-12634, 2020 10 02.
Article in English | MEDLINE | ID: mdl-32876447

ABSTRACT

An aggregation-induced emission enhancement (AIEE) effect in fluorescent lipophilic 2,1,3-benzothiadiazole (BTD) derivatives and their organic nanoaggregates were studied. A set of techniques such as single-crystal X-ray, dynamic light scattering (DLS), electron paramagnetic resonance (EPR), UV-vis, fluorescence, and density functional theory (DFT) calculations have been used to decipher the formation/break (kinetics), properties, and dynamics of the organic nanoaggregates of three BTD small organic molecules. An in-depth study of the excited-state also revealed the preferential relaxation emissive pathways for the BTD derivatives and the dynamics associated with it. The results described herein, for the first time, explain the formation of fluorescent BTD nanoaggregate derivatives and allow for the understanding of their dynamics in solution as well as the ruling forces of both aggregation and break processes along with the involved equilibrium. One of the developed dyes could be used at a nanomolar concentration to selectively stain lipid droplets emitting an intense and bright fluorescence at the red channel. The other two BTDs could also stain lipid droplets at very low concentrations and were visualized preferentially at the blue channel.


Subject(s)
Fluorescent Dyes , Thiadiazoles , Kinetics , Spectrometry, Fluorescence
5.
Molecules ; 25(9)2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32365840

ABSTRACT

A variety of current experiments and molecular dynamics computations are expanding our understanding of rate processes occurring in extreme environments, especially at low temperatures, where deviations from linearity of Arrhenius plots are revealed. The thermodynamic behavior of molecular systems is determined at a specific temperature within conditions on large volume and number of particles at a given density (the thermodynamic limit): on the other side, kinetic features are intuitively perceived as defined in a range between the extreme temperatures, which limit the existence of each specific phase. In this paper, extending the statistical mechanics approach due to Fowler and collaborators, ensembles and partition functions are defined to evaluate initial state averages and activation energies involved in the kinetics of rate processes. A key step is delayed access to the thermodynamic limit when conditions on a large volume and number of particles are not fulfilled: the involved mathematical analysis requires consideration of the role of the succession for the exponential function due to Euler, precursor to the Poisson and Boltzmann classical distributions, recently discussed. Arguments are presented to demonstrate that a universal feature emerges: Convex Arrhenius plots (super-Arrhenius behavior) as temperature decreases are amply documented in progressively wider contexts, such as viscosity and glass transitions, biological processes, enzymatic catalysis, plasma catalysis, geochemical fluidity, and chemical reactions involving collective phenomena. The treatment expands the classical Tolman's theorem formulated quantally by Fowler and Guggenheim: the activation energy of processes is related to the averages of microscopic energies. We previously introduced the concept of "transitivity", a function that compactly accounts for the development of heuristic formulas and suggests the search for universal behavior. The velocity distribution function far from the thermodynamic limit is illustrated; the fraction of molecules with energy in excess of a certain threshold for the description of the kinetics of low-temperature transitions and of non-equilibrium reaction rates is derived. Uniform extension beyond the classical case to include quantum tunneling (leading to the concavity of plots, sub-Arrhenius behavior) and to Fermi and Bose statistics has been considered elsewhere. A companion paper presents a computational code permitting applications to a variety of phenomena and provides further examples.


Subject(s)
Gases/chemistry , Models, Theoretical , Thermodynamics , Algorithms , Kinetics
6.
Molecules ; 24(19)2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31557893

ABSTRACT

The Transitivity function, defined in terms of the reciprocal of the apparent activation energy, measures the propensity for a reaction to proceed and can provide a tool for implementing phenomenological kinetic models. Applications to systems which deviate from the Arrhenius law at low temperature encouraged the development of a user-friendly graphical interface for estimating the kinetic and thermodynamic parameters of physical and chemical processes. Here, we document the Transitivity code, written in Python, a free open-source code compatible with Windows, Linux and macOS platforms. Procedures are made available to evaluate the phenomenology of the temperature dependence of rate constants for processes from the Arrhenius and Transitivity plots. Reaction rate constants can be calculated by the traditional Transition-State Theory using a set of one-dimensional tunneling corrections (Bell (1935), Bell (1958), Skodje and Truhlar and, in particular, the deformed ( d -TST) approach). To account for the solvent effect on reaction rate constant, implementation is given of the Kramers and of Collins-Kimball formulations. An input file generator is provided to run various molecular dynamics approaches in CPMD code. Examples are worked out and made available for testing. The novelty of this code is its general scope and particular exploit of d -formulations to cope with non-Arrhenius behavior at low temperatures, a topic which is the focus of recent intense investigations. We expect that this code serves as a quick and practical tool for data documentation from electronic structure calculations: It presents a very intuitive graphical interface which we believe to provide an excellent working tool for researchers and as courseware to teach statistical thermodynamics, thermochemistry, kinetics, and related areas.


Subject(s)
Models, Chemical , Models, Theoretical , Algorithms , Kinetics
7.
Front Chem ; 7: 380, 2019.
Article in English | MEDLINE | ID: mdl-31192196

ABSTRACT

Advances in the understanding of the dependence of reaction rates from temperature, as motivated from progress in experiments and theoretical tools (e. g., molecular dynamics), are needed for the modeling of extreme environmental conditions (e.g., in astrochemistry and in the chemistry of plasmas). While investigating statistical mechanics perspectives (Aquilanti et al., 2017b, 2018), the concept of transitivity was introduced as a measure for the propensity for a reaction to occur. The Transitivity plot is here defined as the reciprocal of the apparent activation energy vs. reciprocal absolute temperature. Since the transitivity function regulates transit in physicochemical transformations, not necessarily involving reference to transition-state hypothesis of Eyring, an extended version is here proposed to cope with general types of transformations. The transitivity plot permits a representation where deviations from Arrhenius behavior are given a geometrical meaning and make explicit a positive or negative linear dependence of transitivity for sub- and super-Arrhenius cases, respectively. To first-order in reciprocal temperature, the transitivity function models deviations from linearity in Arrhenius plots as originally proposed by Aquilanti and Mundim: when deviations are increasingly larger, other phenomenological formulas, such as Vogel-Fulcher-Tammann, Nakamura-Takayanagi-Sato, and Aquilanti-Sanches-Coutinho-Carvalho are here rediscussed from the transitivity concept perspective and with in a general context. Emphasized is the interest of introducing into this context modifications to a very successful tool of theoretical kinetics, Eyring's Transition-State Theory: considering the behavior of the transitivity function at low temperatures, in order to describe deviation from Arrhenius behavior under the quantum tunneling regime, a "d-TST" formulation was previously introduced (Carvalho-Silva et al., 2017). In this paper, a special attention is dedicated to a derivation of the temperature dependence of viscosity, making explicit reference to feature of the transitivity function, which in this case generally exhibits a super-Arrhenius behavior. This is of relevance also for advantages of using the transitivity function for diffusion-controlled phenomena.

8.
J Comput Chem ; 39(30): 2508-2516, 2018 Nov 15.
Article in English | MEDLINE | ID: mdl-30365178

ABSTRACT

The OH + HCl → H2 O + Cl reaction is one of the most studied four-body systems, extensively investigated by both experimental and theoretical approaches. Here, as a continuation of our previous work on the OH + HBr and OH + HI reactions, which manifest an anti-Arrhenius behavior that was explained by stereodynamic and roaming effects, we extend the strategy to understand the transition to the sub-Arrhenius behavior occurring for the HCl case. As previously, we perform first-principles on-the-fly Born-Oppenheimer molecular dynamics calculations, thermalized at four temperatures (50, 200, 350, and 500 K), but this time we also apply a high-level transition-state-theory, modified to account for tunneling conditions. We find that the theoretical rate constants calculated with Bell tunneling corrections are in good agreement with extensive experimental data available for this reaction in the ample temperature range: (i) simulations show that the roles of molecular orientation in promoting this reaction and of roaming in finding the favorable path are minor than in the HBr and HI cases, and (ii) dominating is the effect of quantum mechanical penetration through the energy barrier along the reaction path on the potential energy surface. The discussion of these results provides clarification of the origin on different non-Arrhenius mechanisms observed along this series of reactions. © 2018 Wiley Periodicals, Inc.

9.
J Mol Model ; 24(9): 235, 2018 Aug 15.
Article in English | MEDLINE | ID: mdl-30112677

ABSTRACT

A study of the spectroscopic properties of the buckyball dimer (C70)2 was performed, which involved mapping the potential energy curve of this system. The spectroscopic constants of the system were obtained using theoretical Dunham and discrete variable representation methods, as well as the Rydberg analytical function expanded to the sixth degree. Because the fullerenes in the dimer have both hexagonal and pentagonal faces, the properties of (C70)2 were examined for different system configurations. The fullerene dimerization process involves a weak interaction, possibly mediated by short-range components such as van der Waals forces. The differences between the spectroscopic constants of the various (C70)2 configurations and between their dissociation energies De were found to be rather small, which can be attributed to the dominant influence of the hexagonal faces of the fullerenes on the interaction between the fullerenes. These results should aid our understanding of the process of fullerene dimer formation and hopefully facilitate the development and application of new materials based on these dimers. Graphical Abstract Comparison of the potential energy curve and a schematic representation for the all (C70)2 fullerenes dimers configurations.

10.
J Org Chem ; 83(19): 12143-12153, 2018 10 05.
Article in English | MEDLINE | ID: mdl-30160956

ABSTRACT

This work describes new chiral task-specific ionic liquids bearing chiral anions as the catalysts for the enantioselective multicomponent Biginelli reaction. For the first time, the combined role of asymmetric counteranion-directed catalysis (ACDC) and ionic liquid effect (ILE) for the chiral induction in the Biginelli multicomponent reaction is demonstrated. The chiral induction arises from a supramolecular aggregate where the anion and the cation of the catalyst are alongside with a key cationic intermediate of the reaction. Each component of the new catalyst had a vital role for the chiral induction success. The mechanism of an asymmetric version of this multicomponent reaction is in addition demonstrated for the first time using electrospray (tandem) mass spectrometry, ESI-MS(/MS). The analyses indicated the reaction takes place preferentially and exclusively through the iminium mechanism. Unprecedented supramolecular aggregates were detected by ESI-MS and characterized by ESI-MS/MS. No intermediate of the other two possible reactions pathways could be detected. Theoretical calculations shed light on the transition state of the transformation during the key step of the chiral induction and helped to elucidate the roles of the chiral anion (ACDC contribution) and of the imidazolium-containing nonchiral cation derivative (ILE contribution) in the molecular reaction process.

11.
Spectrochim Acta A Mol Biomol Spectrosc ; 205: 179-185, 2018 Dec 05.
Article in English | MEDLINE | ID: mdl-30015023

ABSTRACT

The Kr-CH3OH (Krypton-Methanol) system has several technological applications, such as the determination of diffusivity coefficients, their use in the development of detectors and combustion techniques among others. We report an extensive theoretical study concerning the stability of such complex. A mix between molecular dynamics, electronic structure calculations and solution of the nuclear Schrodinger equation lead to investigation of spectroscopic constants, lifetime of the complex and its Quantum Theory Atom in Molecules (QTAIM) properties. The study of the Potential Energy Curves (PEC) suggested three configurations to be stable as their potential well were able to harbor 9 vibrational levels. Properties from the curves also allowed us to obtain the lifetime of the complex, whose values were >1 ps regardless of the conformation. Furthermore, topological investigations of the charge density profile of the complex, in the scope of QTAIM properties, show that van der Waals type interactions takes place between the noble gas and the methanol molecule. These features are in consonance to the experimental fact that this complex is stable.

12.
Phys Chem Chem Phys ; 19(36): 24467-24477, 2017 Sep 20.
Article in English | MEDLINE | ID: mdl-28890979

ABSTRACT

A number of experimental and theoretical papers accounted almost exclusively for two channels in the reaction of atomic hydrogen with methanol: H-abstraction from the methyl (R1) and hydroxyl (R2) functional groups. Recently, several astrochemical studies claimed the importance of another channel for this reaction, which is crucial for kinetic simulations related to the abundance of molecular constituents in planetary atmospheres: methyl radical and water formation (R3 channel). Here, motivated by the lack of and uncertainties about the experimental and theoretical kinetic rate constants for the third channel, we developed first-principles Car-Parrinello molecular dynamics thermalized at two significant temperatures - 300 and 2500 K. Furthermore, the kinetic rate constant of all three channels was calculated using a high-level deformed-transition state theory (d-TST) at a benchmark electronic structure level. d-TST is shown to be suitable for describing the overall rate constant for the CH3OH + H reaction (an archetype of the moderate tunnelling regime) with the precision required for practical applications. Considering the experimental ratios at 1000 K, kR1/kR2 ≈ 0.84 and kR1/kR3 ≈ 15-40, we provided a better estimate when compared with previous theoretical work: 7.47 and 637, respectively. The combination of these procedures explicitly demonstrates the role of the third channel in a significant range of temperatures and indicates its importance considering the thermodynamic control to estimate methyl radical and water formation. We expect that these results can help to shed new light on the fundamental kinetic rate equations for the CH3OH + H reaction.

13.
J Mol Model ; 23(6): 182, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28488189

ABSTRACT

In this paper, we propose a new alternative analytical function aiming to better describe the potential energy curves of the doubly charged diatomic molecules. To achieve this goal, we modified an existing potential function in the literature to describe dicationic diatomic molecules using the deformed exponential function. We generated the potential energy curve of the testing group of dicationic diatomic molecules [Formula: see text], BH2+, [Formula: see text] and NH2+ by means of the CCSD(T)/aug-cc-pVQZ level of theory. To validate this new function, we also calculated the spectroscopic constants and the rovibrational spectra for the electronic state [Formula: see text]of the [Formula: see text] and [Formula: see text] systems using the Dunham and discrete variable representation methods. For BH2+ and NH2+ molecules, despite exhibiting a local minimum in the potential energy curve, no vibrational levels are supported, so the spectroscopic constants for these poorly bound systems are invalidated. The fitting accuracy had a better performance over the original potential for describing dicationic diatomic systems, considering that the discrete variable representation method resulted in a similar vibrational structure described in the literature. This fact can be explained due to the deformed function's flexibility.

14.
Phys Chem Chem Phys ; 19(17): 10843-10853, 2017 May 03.
Article in English | MEDLINE | ID: mdl-28288216

ABSTRACT

In the present contribution, we develop an adapted theoretical approach based on DFT calculations (B3LYP functional) and solution of the nuclear Schrödinger equation by using the Discrete Variable Representation method to model the interaction of ammonia with metallo-phthalocyanines (MPcs, where M = Fe2+, Co2+, Ni2+, Cu2+ or Zn2+). This approach is intended to be a general protocol for the rational design of chemical sensors. The as-obtained binding energy curves, obtained from ab initio points, permitted us to calculate rovibrational energies and spectroscopic constants, as well as to establish the relative population of rovibrational states in different types of MPc-NH3 thermodynamic systems. Simulated binding energy curves show that the binding energy in MPc-NH3 systems is dependent on the type of M central ion, decreasing in the order FePc > ZnPc > CoPc > CuPc > NiPc, with values spanning from -170 to -16 kJ mol-1. Also, MPc-NH3 systems have at least 16 rovibrational levels, which confirms that they are all bound systems (chemically or physically). Despite that, only the interaction between ammonia and FePc, CoPc or ZnPc is spontaneous within the studied temperature range (200-700 K). NiPc and CuPc show a change between spontaneous and non-spontaneous behaviours at ∼400 K and ∼500 K, respectively. Less bound systems should more efficiently guarantee the sensors' signal reset, while they are also less specific than sensors built with medium to strongly bound systems. Moreover, the intermediate energy and spontaneous binding of ammonia to NiPc and CuPc at operation temperatures, as determined with our theoretical approach, suggests that these MPcs are most promising for ammonia sensors.

15.
J Comput Chem ; 38(3): 178-188, 2017 01 30.
Article in English | MEDLINE | ID: mdl-27859380

ABSTRACT

A formulation is presented for the application of tools from quantum chemistry and transition-state theory to phenomenologically cover cases where reaction rates deviate from Arrhenius law at low temperatures. A parameter d is introduced to describe the deviation for the systems from reaching the thermodynamic limit and is identified as the linearizing coefficient in the dependence of the inverse activation energy with inverse temperature. Its physical meaning is given and when deviation can be ascribed to quantum mechanical tunneling its value is calculated explicitly. Here, a new derivation is given of the previously established relationship of the parameter d with features of the barrier in the potential energy surface. The proposed variant of transition state theory permits comparison with experiments and tests against alternative formulations. Prescriptions are provided and implemented to three hydrogen transfer reactions: CH4 + OH → CH3 + H2 O, CH3 Cl + OH → CH2 Cl + H2 O and H2 + CN → H + HCN, widely investigated both experimentally and theoretically. © 2016 Wiley Periodicals, Inc.


Subject(s)
Hydrogen/chemistry , Quantum Theory , Thermodynamics
16.
J Phys Chem A ; 120(28): 5464-73, 2016 Jul 21.
Article in English | MEDLINE | ID: mdl-27355487

ABSTRACT

The present paper concludes our series of kinetics studies on the reactions involved in the complex mechanism of nitrogen trifluoride decomposition. Two other related reactions that, along with this mechanism, take part in an efficient boron nitride growth process are also investigated. We report results concerning two abstraction reactions, namely NF2 + N ⇄ 2NF and NF3 + NF ⇄ 2NF2, and two dissociations, N2F4 ⇄ 2NF2 and N2F3 ⇄ NF2 + NF. State-of-the-art electronic structure calculations at the CCSD(T)/cc-pVTZ level of theory were considered to determine geometries and frequencies of reactants, products, and transition states. Extrapolation of the energies to the complete basis set limit was used to obtain energies of all the species. We applied transition state theory to compute thermal rate constants including Wigner, Eckart, Bell, and deformed theory corrections in order to take tunneling effects into account. The obtained results are in good agreement with the experimental data available in the literature and are expected to provide a better phenomenological understanding of the NF3 decomposition role in the boron nitride growth for a wide range of temperature values.

SELECTION OF CITATIONS
SEARCH DETAIL
...