Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 140(14): 144306, 2014 Apr 14.
Article in English | MEDLINE | ID: mdl-24735298

ABSTRACT

A detailed experimental investigation of the (19)F nuclear magnetic resonance is made on single crystals of the homometallic Cr8 antiferromagnetic molecular ring and heterometallic Cr7Cd and Cr7Ni rings in the low temperature ground state. Since the F(-) ion is located midway between neighboring magnetic metal ions in the ring, the (19)F-NMR spectra yield information about the local electronic spin density and (19)F hyperfine interactions. In Cr8, where the ground state is a singlet with total spin S(T) = 0, the (19)F-NMR spectra at 1.7 K and low external magnetic field display a single narrow line, while when the magnetic field is increased towards the first level crossing field, satellite lines appear in the (19)F-NMR spectrum, indicating a progressive increase in the Boltzmann population of the first excited state S(T) = 1. In the heterometallic rings, Cr7Cd and Cr7Ni, whose ground state is magnetic with S(T) = 3/2 and S(T) = 1/2, respectively, the (19)F-NMR spectrum has a complicated structure which depends on the strength and orientation of the magnetic field, due to both isotropic and anisotropic transferred hyperfine interactions and classical dipolar interactions. From the (19)F-NMR spectra in single crystals we estimated the transferred hyperfine constants for both the F(-)-Ni(2+) and the F(-)-Cd(2+) bonds. The values of the hyperfine constants compare well to the ones known for F(-)-Ni(2+) in KNiF3 and NiF2 and for F(-)-Cr(3+) in K2NaCrF6. The results are discussed in terms of hybridization of the 2s, 2p orbitals of the F(-) ion and the d orbitals of the magnetic ion. Finally, we discuss the implications of our results for the electron-spin decoherence.

2.
J Phys Condens Matter ; 24(40): 406002, 2012 Oct 10.
Article in English | MEDLINE | ID: mdl-22971620

ABSTRACT

We present (53)Cr-NMR spectra collected at low temperature in a single crystal of the heterometallic antiferromagnetic (AF) ring Cr(7)Ni in the S = 1/2 ground state with the aim of establishing the distribution of the local electronic moment in the ring. Due to the poor S/N we observed only one signal which is ascribed to three almost equivalent (53)Cr nuclei in the ring. The calculated spin density in Cr(7)Ni in the ground state, with the applied magnetic field both parallel and perpendicular to the plane of the ring, turns out to be AF staggered with the greatest component of the local spin for the Cr(3+) ions next to the Ni(2+) ion. The (53)Cr-NMR frequency was found to be in good agreement with the local spin density calculated theoretically by assuming a core polarization field of H(cp) = - 11 T/µ(B) for both orientations, close to the value found previously in Cr(7)Cd. The observed orientation dependence of the local spin moments is well reproduced by the theoretical calculation and evidences the importance of single-ion and dipolar anisotropies.


Subject(s)
Chromium Alloys/chemistry , Magnetic Resonance Spectroscopy/methods , Materials Testing , Spin Labels
SELECTION OF CITATIONS
SEARCH DETAIL