Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-34129889

ABSTRACT

Accumulating evidence points to neurophysiological abnormalities of the motor cortex in Schizophrenia (SCZ). However, whether these abnormalities represent a core biological feature of psychosis rather than a superimposed neurodegenerative process is yet to be defined, as it is their putative relationship with clinical symptoms. in this study, we used Transcranial Magnetic Stimulation coupled with electroencephalography (TMS-EEG) to probe the intrinsic oscillatory properties of motor (Brodmann Area 4, BA4) and non-motor (posterior parietal, BA7) cortical areas in twenty-three first-episode psychosis (FEP) patients and thirteen age and gender-matched healthy comparison (HC) subjects. Patients underwent clinical evaluation at baseline and six-months after the TMS-EEG session. We found that FEP patients had reduced EEG activity evoked by TMS of the motor cortex in the beta-2 (25-34 Hz) frequency band in a cluster of electrodes overlying BA4, relative to HC participants. Beta-2 deficits in the TMS-evoked EEG response correlated with worse positive psychotic symptoms at baseline and also predicted positive symptoms severity at six-month follow-up assessments. Altogether, these findings indicate that reduced TMS-evoked fast oscillatory activity in the motor cortex is an early neural abnormality that: 1) is present at illness onset; 2) may represent a state marker of psychosis; and 3) could play a role in the development of new tools of outcome prediction in psychotic patients.


Subject(s)
Motor Cortex/physiopathology , Psychotic Disorders/diagnosis , Transcranial Magnetic Stimulation , Adult , Electroencephalography , Female , Humans , Male
2.
Neurosci Conscious ; 2021(2): niab023, 2021.
Article in English | MEDLINE | ID: mdl-38496724

ABSTRACT

Over the last years, a surge of empirical studies converged on complexity-related measures as reliable markers of consciousness across many different conditions, such as sleep, anesthesia, hallucinatory states, coma, and related disorders. Most of these measures were independently proposed by researchers endorsing disparate frameworks and employing different methods and techniques. Since this body of evidence has not been systematically reviewed and coherently organized so far, this positive trend has remained somewhat below the radar. The aim of this paper is to make this consilience of evidence in the science of consciousness explicit. We start with a systematic assessment of the growing literature on complexity-related measures and identify their common denominator, tracing it back to core theoretical principles and predictions put forward more than 20 years ago. In doing this, we highlight a consistent trajectory spanning two decades of consciousness research and provide a provisional taxonomy of the present literature. Finally, we consider all of the above as a positive ground to approach new questions and devise future experiments that may help consolidate and further develop a promising field where empirical research on consciousness appears to have, so far, naturally converged.

3.
Front Physiol ; 9: 1341, 2018.
Article in English | MEDLINE | ID: mdl-30319449

ABSTRACT

Controlled breathing maneuver is being widely applied for cardiovascular autonomic control evaluation and cardiac vagal activation through reduction of breathing rate (BR). However, this maneuver presented contradictory results depending on the protocol and the chosen BR. These variations may be related to the individual intrinsic profile baseline sympathetic tonus, as described before by others. In this study, we evaluated the effect of controlled breathing maneuver on cardiovascular autonomic control in 26 healthy subjects allocated into two protocols: (1) controlled breathing in three different rates (10, 15, and 20 breaths/min) and (2) controlled breathing in rates normalized by the individual spontaneous breathing rate (SBR) at 100, 80, 70, and 50%. Our results showed autonomic responses favorable to vagal modulation with the lower BR maneuvers. Nevertheless, while this activation was variable using the standard protocol, all participants of the normalized protocol demonstrated an increase of vagal modulation at 80% BR (HFnu 80 = 67.5% vs. 48.2%, p < 0.0001). These results suggest that controlled breathing protocols to induce vagal activation should consider the SBR, being limited to values moderately lower than the baseline.

4.
Curr Biol ; 25(23): 3099-105, 2015 Dec 07.
Article in English | MEDLINE | ID: mdl-26752078

ABSTRACT

A common endpoint of general anesthetics is behavioral unresponsiveness, which is commonly associated with loss of consciousness. However, subjects can become disconnected from the environment while still having conscious experiences, as demonstrated by sleep states associated with dreaming. Among anesthetics, ketamine is remarkable in that it induces profound unresponsiveness, but subjects often report "ketamine dreams" upon emergence from anesthesia. Here, we aimed at assessing consciousness during anesthesia with propofol, xenon, and ketamine, independent of behavioral responsiveness. To do so, in 18 healthy volunteers, we measured the complexity of the cortical response to transcranial magnetic stimulation (TMS)--an approach that has proven helpful in assessing objectively the level of consciousness irrespective of sensory processing and motor responses. In addition, upon emergence from anesthesia, we collected reports about conscious experiences during unresponsiveness. Both frontal and parietal TMS elicited a low-amplitude electroencephalographic (EEG) slow wave corresponding to a local pattern of cortical activation with low complexity during propofol anesthesia, a high-amplitude EEG slow wave corresponding to a global, stereotypical pattern of cortical activation with low complexity during xenon anesthesia, and a wakefulness-like, complex spatiotemporal activation pattern during ketamine anesthesia. Crucially, participants reported no conscious experience after emergence from propofol and xenon anesthesia, whereas after ketamine they reported long, vivid dreams unrelated to the external environment. These results are relevant because they suggest that brain complexity may be sensitive to the presence of disconnected consciousness in subjects who are considered unconscious based on behavioral responses.


Subject(s)
Anesthesia , Anesthetics, General/pharmacology , Consciousness/drug effects , Ketamine/pharmacology , Propofol/pharmacology , Wakefulness/drug effects , Xenon/pharmacology , Adolescent , Adult , Anesthetics, Dissociative/pharmacology , Anesthetics, Inhalation/pharmacology , Anesthetics, Intravenous/pharmacology , Electroencephalography , Female , Humans , Male , Transcranial Magnetic Stimulation , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...