Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Phys Chem Chem Phys ; 23(16): 10097-10107, 2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33876160

ABSTRACT

Hydrogen bonds (HBs) are crucial non-covalent interactions in chemistry. Recently, the occurrence of an HB in (H2S)2 has been reported (Arunan et al., Angew. Chem., Int. Ed., 2018, 57, 15199), challenging the textbook view of H2S dimers as mere van der Waals clusters. We herein try to shed light on the nature of the intermolecular interactions in the H2O, H2S, and H2Se dimers via correlated electronic structure calculations, Symmetry Adapted Perturbation Theory (SAPT) and Quantum Chemical Topology (QCT). Although (H2S)2 and (H2Se)2 meet some of the criteria for the occurrence of an HB, potential energy curves as well as SAPT and QCT analyses indicate that the nature of the interaction in (H2O)2 is substantially different (e.g. more anisotropic) from that in (H2S)2 and (H2Se)2. QCT reveals that the HB in (H2O)2 includes substantial covalent, dispersion and electrostatic contributions, while the last-mentioned component plays only a minor role in (H2S)2 and (H2Se)2. The major contributions to the interactions of the dimers of H2S and H2Se are covalency and dispersion as revealed by the exchange-correlation components of QCT energy partitions. The picture yielded by SAPT is somewhat different but compatible with that offered by QCT. Overall, our results indicate that neither (H2S)2 nor (H2Se)2 are hydrogen-bonded systems, showing how the nature of intermolecular contacts involving hydrogen atoms evolves in a group down the periodic table.

2.
Chemistry ; 26(71): 16951, 2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33141456

ABSTRACT

Invited for the cover of this issue is Alberto Fernández-Alarcón and co-workers at The Institute of Chemistry of the National Autonomous University of Mexico and The School of Chemistry of the University of Oviedo. The image depicts the real space analysis of the excitation energies in the double blue and red shift of the water dimer. Read the full text of the article at 10.1002/chem.202002854.

3.
Chemistry ; 26(71): 17035-17045, 2020 Dec 18.
Article in English | MEDLINE | ID: mdl-32822523

ABSTRACT

The development of chemical intuition in photochemistry faces several difficulties that result from the inadequacy of the one-particle picture, the Born-Oppenheimer approximation, and other basic ideas used to build models. It is shown herein how real-space approaches can be efficiently used to gain valuable insights in photochemistry through a simple example of red and blue shift effects: the double hypso- and bathochromic shifts in the low-lying valence excited states of (H2 O)2 . It is demonstrated that 1) the use of these techniques allows the perturbative language used in the theory of intermolecular interactions, even in the strongly interacting short-range regime, to be maintained; 2) one and only one molecule is photoexcited in each of the addressed excited states and 3) the electrostatic interaction between the in-the-cluster molecular dipoles provides a fairly intuitive rationalisation of the observed batho- and hypsochromism. The methods exploited and illustrated herein are able to maintain the individuality and properties of the interacting entities in a molecular aggregate, and thereby they allow chemical intuition in general states, at any geometry and using a broad variety of electronic structure methods to be kept and built.

4.
J Comput Chem ; 41(13): 1234-1241, 2020 May 15.
Article in English | MEDLINE | ID: mdl-32058617

ABSTRACT

We describe an efficient implementation of the partition of the second-order Møller-Plesset (MP2) correlation energy within the interacting quantum atoms (IQA) energy decomposition. We simplify the IQA integration bottleneck by considering only the occupied to virtual elements of the second order reduced density matrix, a procedure that reduces substantially the size of the two-electron matrix, which has to be addressed. The algorithmic improvements described herein allow to perform the decomposition of the MP2 correlation energy for medium size molecular systems using moderate computational resources. We expect that the methods developed in this investigation will prove useful to understand electron correlation effects through a real space perspective.

5.
J Phys Chem A ; 124(2): 339-352, 2020 Jan 16.
Article in English | MEDLINE | ID: mdl-31873015

ABSTRACT

In this contribution we introduce the concept of bond order density (BOD) on the basis of a previous work on natural adaptive orbitals. We show that BODs may be used to visualize both the global spatial distribution of the covalent bond order and its eigencomponents, which we call bond(ing) channels. BODs can be equally computed at correlated and noncorrelated levels of theory and in ground or excited states, thus offering an appealing description of bond-forming, bond-breaking, and bond-evolution processes. We show the power of the approach by examining a number of homo- and heterodiatomics, including the controversial existence of a fourth bonding component in dicarbon, by analyzing a few interesting bonding situations in polyatomics and chemical transformations, and by exemplifying exotic bonding behaviors in simple excited electronic states.

6.
Chemistry ; 25(52): 12169-12179, 2019 Sep 18.
Article in English | MEDLINE | ID: mdl-31310392

ABSTRACT

Real-space tools were employed to show that the chemical bonding scenario used routinely to understand ground states lacks the necessary flexibility in excited states. It is shown that, even for two-center, two-electron bonds, the real-space bond orders have exotic values that have never been reported. The nature of these situations was uncovered by using electron-counting techniques that provide an appealing statistical interpretation of bonding descriptors, together with simple physical models. Bond orders greater than one as well as negative bond orders for a single bonding electron pair emerge in situations in which the electrons in the pair show a gregarious (bosonic) instead of the usual lonely (fermionic) behavior. In the first case the gregarious pair is intra-atomic, whereas the coupling is interatomic in the second. A number of examples are used to substantiate these claims.

7.
Molecules ; 24(12)2019 Jun 12.
Article in English | MEDLINE | ID: mdl-31212835

ABSTRACT

Tetrel bonds, the purportedly non-covalent interaction between a molecule that contains an atom of group 14 and an anion or (more generally) an atom or molecule with lone electron pairs, are under intense scrutiny. In this work, we perform an interacting quantum atoms (IQA) analysis of several simple complexes formed between an electrophilic fragment (A) (CH3F, CH4, CO2, CS2, SiO2, SiH3F, SiH4, GeH3F, GeO2, and GeH4) and an electron-pair-rich system (B) (NCH, NCO-, OCN-, F-, Br-, CN-, CO, CS, Kr, NC-, NH3, OC, OH2, SH-, and N3-) at the aug-cc-pvtz coupled cluster singles and doubles (CCSD) level of calculation. The binding energy ( E bind AB ) is separated into intrafragment and inter-fragment components, and the latter in turn split into classical and covalent contributions. It is shown that the three terms are important in determining E bind AB , with absolute values that increase in passing from electrophilic fragments containing C, Ge, and Si. The degree of covalency between A and B is measured through the real space bond order known as the delocalization index ( δ AB ). Finally, a good linear correlation is found between δ AB and E xc AB , the exchange correlation (xc) or covalent contribution to E bind AB .


Subject(s)
Models, Theoretical , Quantum Theory , Algorithms
8.
Phys Chem Chem Phys ; 21(25): 13428-13439, 2019 Jun 26.
Article in English | MEDLINE | ID: mdl-30942218

ABSTRACT

Different developments in chemistry and emerging technologies have generated a renewed interest in the properties of molecular excited states. We present herein the partition of black-box, size-consistent equation-of-motion coupled cluster singles and doubles (EOM-CCSD) excitation energies within the framework of the interacting quantum atoms (IQA) formalism. We denote this method as IQA/EOM-CCSD. We illustrate this approach by considering small molecules used often in the study of excited states. This investigation shows how the combination of IQA and EOM-CCSD may provide valuable insights into the molecular changes induced by electron excitation via the real space distribution of the energy of an absorbed photon in a molecular system. Our results reveal (i) the most energetically deformed atomic basins and (ii) the most affected covalent and non-covalent interactions within a molecule due to a given photoexcitation. In other words, this kind of analysis provides insights into the spatial energetic redistribution accompanying an electronic excitation, with interesting foreseeable applications in the rational design of photoexcitations with tailored chemical effects. Altogether, we expect that the IQA/EOM-CCSD excitation energy partition will prove useful in the understanding of systems and processes of interest in photophysics and photochemistry.

9.
Chemistry ; 25(1): 309-314, 2019 Jan 02.
Article in English | MEDLINE | ID: mdl-30264915

ABSTRACT

The increasing availability of real-space interaction energies between quantum atoms or fragments that provide a chemically intuitive decomposition of intrinsic bond energies into electrostatic and covalent terms [see, for instance, Chem. Eur. J. 2018, 24, 9101] provides evidence for differences between the physicist's concept of interaction and the chemist's concept of a bond. Herein, it is argued that, for the former, all types of interactions are treated equally, whereas, for the latter, only the covalent short-range interactions have actually been used to build intuition about chemical graphs and chemical bonds. This has led to the bonding role of long-range Coulombic terms in molecular chemistry being overlooked. Simultaneously, blind consideration of electrostatic terms in chemical bonding parlance may lead to confusion. The relationship between these concepts is examined herein, and some notes of caution on how to merge them are proposed.

10.
Chemistry ; 24(36): 9083-9089, 2018 Jun 26.
Article in English | MEDLINE | ID: mdl-29578617

ABSTRACT

The reaction pathway for the rupture of the carbon-carbon double bond of C2 F4 has been calculated with ab initio methods at the CASSCF(8,8)+NEVPT2/aug-cc-pVTZ and CCSD(T)/aug-cc-pVTZ levels and with density functional theory using M06-L and M06-2X functionals in conjunction with aug-cc-pVTZ basis sets. The calculations suggest that the bond dissociation pathway proceeds by a nonlinear reaction course without an activation barrier yielding the CF2 fragments in the (1 A1 ) ground state. A bonding analysis indicates that there is a continuous change in the electronic structure of the CF2 fragments during the elongation of the C-C distance from a (3 B1 ) excited state at the equilibrium geometry of C2 F4 to the (1 A1 ) ground state. EDA-NOCV calculations suggest that the carbon-carbon interactions in C2 F4 at equilibrium distance and longer C-C values up to ≈1.60 Šare best described in terms of electron-sharing bonding between the CF2 fragments in the (3 B1 ) excited state. At longer distances, the situation changes toward dative bonding between CF2 fragments in the (1 A1 ) ground state.

11.
J Phys Chem A ; 122(3): 849-858, 2018 Jan 25.
Article in English | MEDLINE | ID: mdl-29266947

ABSTRACT

We apply several modern quantum chemical topology (QCT) tools to explore the chemical bonding in well established beryllium bonds. By using the interacting quantum atoms (IQA) approach together with electron distribution functions (EDF) and the natural adaptive orbitals (NAdOs) picture, we show that, in agreement with orbital-based analyses, the interaction in simple σ and π complexes formed by BeX2 (X = H, F, Cl) with water, ammonia, ethylene, and acetylene is dominated by electrostatic terms, albeit covalent contributions cannot be ignored. Our detailed analysis proves that several σ back-donation channels are relevant in these dimers, actually controlling the conformational preference in the π adducts. A number of one-electron beryllium bonds are also studied. Orbital invariant real space arguments clearly show that the role of covalency and charge transfer cannot be ignored.

SELECTION OF CITATIONS
SEARCH DETAIL
...