Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Lancet Digit Health ; 5(9): e582-e593, 2023 09.
Article in English | MEDLINE | ID: mdl-37516557

ABSTRACT

BACKGROUND: The Invasive Respiratory Infection Surveillance (IRIS) Consortium was established to assess the impact of the COVID-19 pandemic on invasive diseases caused by Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis, and Streptococcus agalactiae. We aimed to analyse the incidence and distribution of these diseases during the first 2 years of the COVID-19 pandemic compared to the 2 years preceding the pandemic. METHODS: For this prospective analysis, laboratories in 30 countries and territories representing five continents submitted surveillance data from Jan 1, 2018, to Jan 2, 2022, to private projects within databases in PubMLST. The impact of COVID-19 containment measures on the overall number of cases was analysed, and changes in disease distributions by patient age and serotype or group were examined. Interrupted time-series analyses were done to quantify the impact of pandemic response measures and their relaxation on disease rates, and autoregressive integrated moving average models were used to estimate effect sizes and forecast counterfactual trends by hemisphere. FINDINGS: Overall, 116 841 cases were analysed: 76 481 in 2018-19, before the pandemic, and 40 360 in 2020-21, during the pandemic. During the pandemic there was a significant reduction in the risk of disease caused by S pneumoniae (risk ratio 0·47; 95% CI 0·40-0·55), H influenzae (0·51; 0·40-0·66) and N meningitidis (0·26; 0·21-0·31), while no significant changes were observed for S agalactiae (1·02; 0·75-1·40), which is not transmitted via the respiratory route. No major changes in the distribution of cases were observed when stratified by patient age or serotype or group. An estimated 36 289 (95% prediction interval 17 145-55 434) cases of invasive bacterial disease were averted during the first 2 years of the pandemic among IRIS-participating countries and territories. INTERPRETATION: COVID-19 containment measures were associated with a sustained decrease in the incidence of invasive disease caused by S pneumoniae, H influenzae, and N meningitidis during the first 2 years of the pandemic, but cases began to increase in some countries towards the end of 2021 as pandemic restrictions were lifted. These IRIS data provide a better understanding of microbial transmission, will inform vaccine development and implementation, and can contribute to health-care service planning and provision of policies. FUNDING: Wellcome Trust, NIHR Oxford Biomedical Research Centre, Spanish Ministry of Science and Innovation, Korea Disease Control and Prevention Agency, Torsten Söderberg Foundation, Stockholm County Council, Swedish Research Council, German Federal Ministry of Health, Robert Koch Institute, Pfizer, Merck, and the Greek National Public Health Organization.


Subject(s)
Bacterial Infections , COVID-19 , Neisseria meningitidis , Humans , Pandemics , COVID-19/epidemiology , Streptococcus pneumoniae , Haemophilus influenzae
2.
Antibiotics (Basel) ; 12(5)2023 May 09.
Article in English | MEDLINE | ID: mdl-37237781

ABSTRACT

The recommended empiric ceftriaxone dosing regimen for acute bacterial meningitis in adults is 2 g every 12 h. After penicillin-susceptible Streptococcus pneumoniae is isolated as a causative microorganism, the ceftriaxone dose may be continued or reduced to a single dose of 2 g every 24 h, per institutional preference. There is no clear guidance that indicates the superiority of one regimen over the other. The objective of this study was to evaluate the susceptibility of S. pneumoniae in the cerebral spinal fluid (CSF) of patients with meningitis and the relationship between ceftriaxone dose and clinical outcomes. We identified 52 patients with S. pneumoniae meningitis with positive CSF cultures who were treated at the University Hospital, Bern, Switzerland, over a 19-year period. We collected clinical and microbiological data for evaluation. Broth microdilution and Etest methods were performed to test penicillin and ceftriaxone susceptibility. All isolates were susceptible to ceftriaxone. Ceftriaxone was empirically used in 50 patients, with a starting dosing regimen of 2 g every 24 h in 15 patients and 2 g every 12 h in 35 patients. In 32 patients started on a twice-daily regimen (91%), doses were reduced to once daily after a median of 1.5 (95% CI 1-2) days. The overall in-hospital mortality was 15.4% (n = 8), and 45.7% of patients reported at least one sequela of meningitis at the last follow-up (median 375, 95% CI 189-1585 days). We found no statistical difference in outcome between the 2 g every 24 h and the 2 g every 12 h ceftriaxone dosing regimens. A ceftriaxone total daily dose of 2 g may be associated with similar outcomes to a 4 g total daily dose, provided that the causative organism is highly susceptible to ceftriaxone. The persistence of neurological and infection sequelae at the last follow-up underscores the need for optimal treatment of these complex infections.

3.
J Heart Lung Transplant ; 42(10): 1445-1454, 2023 10.
Article in English | MEDLINE | ID: mdl-37245557

ABSTRACT

BACKGROUND: Driveline infections (DLIs) at the exit site are frequent in patients with left ventricular assist devices (LVADs). The dynamics from colonization to infection are yet to be investigated. We combined systematic swabbing at the driveline exit site and genomic analyses to study the dynamics of bacterial pathogens and get insights into DLIs pathogenesis. METHODS: A prospective, observational, single-center cohort study at the University Hospital of Bern, Switzerland was performed. Patients with LVAD were systematically swabbed at the driveline exit site between June 2019 and December 2021, irrespective of signs and symptoms of DLI. Bacterial isolates were identified and a subset was whole-genome sequenced. RESULTS: Fifty-three patients were screened, of which 45 (84.9%) were included in the final population. Bacterial colonization at the driveline exit site without manifestation of DLI was frequent and observed in 17 patients (37.8%). Twenty-two patients (48.9%) developed at least one DLI episode over the study period. Incidence of DLIs reached 2.3 cases per 1000 LVAD days. The majority of the organisms cultivated from exit sites were Staphylococcus species. Genome analysis revealed that bacteria persisted at the driveline exit site over time. In four patients, transition from colonization to clinical DLI was observed. CONCLUSIONS: Our study is the first to address bacterial colonization in the LVAD-DLI setting. We observed that bacterial colonization at the driveline exit site was a frequent phenomenon, and in a few cases, it preceded clinically relevant infections. We also provided acquisition of hospital-acquired multidrug-resistant bacteria and the transmission of pathogens between patients.


Subject(s)
Heart Failure , Heart-Assist Devices , Prosthesis-Related Infections , Humans , Cohort Studies , Prospective Studies , Prosthesis-Related Infections/etiology , Retrospective Studies , Bacteria , Heart-Assist Devices/adverse effects
4.
Clin Microbiol Infect ; 29(2): 190-199, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35623578

ABSTRACT

OBJECTIVES: Matrix assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry (MS) is a widely used method for bacterial species identification. Incomplete databases and mass spectral quality (MSQ) still represent major challenges. Important proxies for MSQ are the number of detected marker masses, reproducibility, and measurement precision. We aimed to assess MSQs across diagnostic laboratories and the potential of simple workflow adaptations to improve it. METHODS: For baseline MSQ assessment, 47 diverse bacterial strains, which are challenging to identify by MALDI-TOF MS, were routinely measured in 36 laboratories from 12 countries, and well-defined MSQ features were used. After an intervention consisting of detailed reported feedback and instructions on how to acquire MALDI-TOF mass spectra, measurements were repeated and MSQs were compared. RESULTS: At baseline, we observed heterogeneous MSQ between the devices, considering the median number of marker masses detected (range = [2-25]), reproducibility between technical replicates (range = [55%-86%]), and measurement error (range = [147 parts per million (ppm)-588 ppm]). As a general trend, the spectral quality was improved after the intervention for devices, which yielded low MSQs in the baseline assessment as follows: for four out of five devices with a high measurement error, the measurement precision was improved (p-values <0.001, paired Wilcoxon test); for six out of ten devices, which detected a low number of marker masses, the number of detected marker masses increased (p-values <0.001, paired Wilcoxon test). DISCUSSION: We have identified simple workflow adaptations, which, to some extent, improve MSQ of poorly performing devices and should be considered by laboratories yielding a low MSQ. Improving MALDI-TOF MSQ in routine diagnostics is essential for increasing the resolution of bacterial identification by MALDI-TOF MS, which is dependent on the reproducible detection of marker masses. The heterogeneity identified in this external quality assessment (EQA) requires further study.


Subject(s)
Bacteria , Laboratories , Humans , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods , Reproducibility of Results , Workflow
5.
Antimicrob Resist Infect Control ; 11(1): 47, 2022 03 09.
Article in English | MEDLINE | ID: mdl-35264215

ABSTRACT

BACKGROUND: Agrobacterium spp. are infrequent agents of bloodstream infections linked to healthcare-associated outbreaks. However, it is unclear if outbreaks also occur across larger geographic areas. Triggered by two local clusters from putative point sources, our aim was to detect potential additional clusters in Switzerland. METHODS: We performed a nationwide descriptive study of cases in Switzerland based on a prospective surveillance system (Swiss Centre for Antibiotic Resistance, anresis.ch), from 2008 to 2019. We identified patients with Agrobacterium spp. isolated from blood cultures and used a survey to collect clinical-epidemiological information and susceptibility testing results. We performed whole genome sequencing (WGS) of available clinical isolates and determined their relatedness by single nucleotide polymorphism (SNP) variant calling analysis. RESULTS: We identified a total of 36 cases of Agrobacterium spp. from blood samples over 10 years. Beyond previously known local clusters, no new ones were identified. WGS-based typing was performed on 22 available isolates and showed no clonal relationships between newly identified isolates or to those from the known clusters, with all isolates outside these clusters being at least 50 SNPs apart. CONCLUSION AND RELEVANCE: Agrobacterium spp. bacteraemia is infrequently detected and, given that it may be healthcare-associated and stem from a point source, occurrence of multiple episodes should entail an outbreak investigation. With the help of the national antimicrobial resistance surveillance system we identified multiple clinical cases of this rare pathogen but found no evidence by WGS that suggested a nation-wide outbreak.


Subject(s)
Agrobacterium , Bacteremia , Bacteremia/epidemiology , Humans , Prospective Studies , Retrospective Studies , Switzerland/epidemiology
6.
Infect Prev Pract ; 4(2): 100211, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35330753

ABSTRACT

Background: The optimal screening strategy in hospitals to identify secondary cases after contact with a meticillin-resistant Staphylococcus aureus (MRSA) index patient in a low prevalence setting is not well defined. We aimed at identifying factors associated with documented MRSA transmissions. Method: Single center, retrospective, nested case-control study. We evaluated the screening strategy in our 950 bed tertiary care hospital from 2008 - 2014. Room and ward contacts of MRSA index patients present at time of MRSA identification were screened. We compared characteristics of Staphylococcus aureus Protein A (spa)-type matched contact patients (cases) to negative or spa-type mismatched contact patients (controls). Results: Among 270,000 inpatients from 2008 - 2014, 215 MRSA screenings yielded 3013 contact patients, and 6 (0.2%) spa-type matched pairs. We included 225 controls for the nested case-control study. The contact type for the cases was more frequently "same room" and less frequently "same ward" compared with the controls (P = 0.001). Also, exposure time was longer for cases (median of 6 days [IQR 3-9]) than for controls (1 day [0-3], P=0.016). Conclusion: The extensive MRSA screening strategy revealed only few index/contact matches based on spa-typing. Prolonged exposure time and a shared room were significantly associated with MRSA transmission. A targeted screening strategy may be more useful in a low prevalence setting than screening entire wards.

7.
Euro Surveill ; 27(48)2022 12.
Article in English | MEDLINE | ID: mdl-36695463

ABSTRACT

A large clonal outbreak caused by vancomycin-resistant Enterococcus faecium (VRE) affected the Bern University Hospital group from the end of December 2017 until July 2020. We describe the characteristics of the outbreak and the bundle of infection prevention and control (IPC) measures implemented. The outbreak was first recognised when two concomitant cases of VRE bloodstream infection were identified on the oncology ward. During 32 months, 518 patients in the 1,300-bed hospital group were identified as vanB VRE carriers. Eighteen (3.5%) patients developed an invasive infection, of whom seven had bacteraemia. In 2018, a subset of 328 isolates were analysed by whole genome sequencing, 312 of which were identified as sequence type (ST) 796. The initial IPC measures were implemented with a focus on the affected wards. However, in June 2018, ST796 caused another increase in cases, and the management strategy was intensified and escalated to a hospital-wide level. The clinical impact of this large nosocomial VRE outbreak with the emergent clone ST796 was modest. A hospital-wide approach with a multimodal IPC bundle was successful against this highly transmissible strain.


Subject(s)
Cross Infection , Enterococcus faecium , Gram-Positive Bacterial Infections , Vancomycin-Resistant Enterococci , Humans , Vancomycin , Enterococcus faecium/genetics , Cross Infection/epidemiology , Switzerland/epidemiology , Vancomycin-Resistant Enterococci/genetics , Disease Outbreaks , Hospitals, University , Gram-Positive Bacterial Infections/epidemiology
8.
Emerg Microbes Infect ; 10(1): 2202-2204, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34723783

ABSTRACT

Incidence of invasive pneumococcal disease (IPD) has been low during the peak of the COVID-19 pandemic. In this study, we found that the IPD numbers again increased in Switzerland during the first six months of 2021 and that this coincides with the loosening of COVID-19 measures. Vaccine pneumococcal serotypes have continued to decrease and non-vaccine type serotype 23B has emerged (8% of the isolates in 2021). Worryingly, serotype 23B is associated with reduced susceptibility to penicillin.


Subject(s)
COVID-19/prevention & control , Pneumococcal Infections/epidemiology , SARS-CoV-2 , Streptococcus pneumoniae/classification , Drug Resistance, Bacterial , Humans , Pneumococcal Infections/microbiology , Pneumococcal Vaccines/immunology , Serotyping , Streptococcus pneumoniae/drug effects , Switzerland/epidemiology
9.
Genome Med ; 13(1): 150, 2021 09 13.
Article in English | MEDLINE | ID: mdl-34517886

ABSTRACT

BACKGROUND: Klebsiella spp. are opportunistic pathogens which can cause severe infections, are often multi-drug resistant and are a common cause of hospital-acquired infections. Multiple new Klebsiella species have recently been described, yet their clinical impact and antibiotic resistance profiles are largely unknown. We aimed to explore Klebsiella group- and species-specific clinical impact, antimicrobial resistance (AMR) and virulence. METHODS: We analysed whole-genome sequence data of a diverse selection of Klebsiella spp. isolates and identified resistance and virulence factors. Using the genomes of 3594 Klebsiella isolates, we predicted the masses of 56 ribosomal subunit proteins and identified species-specific marker masses. We then re-analysed over 22,000 Matrix-Assisted Laser Desorption Ionization - Time Of Flight (MALDI-TOF) mass spectra routinely acquired at eight healthcare institutions in four countries looking for these species-specific markers. Analyses of clinical and microbiological endpoints from a subset of 957 patients with infections from Klebsiella species were performed using generalized linear mixed-effects models. RESULTS: Our comparative genomic analysis shows group- and species-specific trends in accessory genome composition. With the identified species-specific marker masses, eight Klebsiella species can be distinguished using MALDI-TOF MS. We identified K. pneumoniae (71.2%; n = 12,523), K. quasipneumoniae (3.3%; n = 575), K. variicola (9.8%; n = 1717), "K. quasivariicola" (0.3%; n = 52), K. oxytoca (8.2%; n = 1445), K. michiganensis (4.8%; n = 836), K. grimontii (2.4%; n = 425) and K. huaxensis (0.1%; n = 12). Isolates belonging to the K. oxytoca group, which includes the species K. oxytoca, K. michiganensis and K. grimontii, were less often resistant to 4th-generation cephalosporins than isolates of the K. pneumoniae group, which includes the species K. pneumoniae, K. quasipneumoniae, K. variicola and "K. quasivariicola" (odds ratio = 0.17, p < 0.001, 95% confidence interval [0.09,0.28]). Within the K. pneumoniae group, isolates identified as K. pneumoniae were more often resistant to 4th-generation cephalosporins than K. variicola isolates (odds ratio = 2.61, p = 0.003, 95% confidence interval [1.38,5.06]). K. oxytoca group isolates were found to be more likely associated with invasive infection to primary sterile sites than K. pneumoniae group isolates (odds ratio = 2.39, p = 0.0044, 95% confidence interval [1.05,5.53]). CONCLUSIONS: Currently misdiagnosed Klebsiella spp. can be distinguished using a ribosomal marker-based approach for MALDI-TOF MS. Klebsiella groups and species differed in AMR profiles, and in their association with invasive infection, highlighting the importance for species identification to enable effective treatment options.


Subject(s)
Klebsiella Infections/diagnosis , Klebsiella oxytoca/genetics , Klebsiella oxytoca/isolation & purification , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Whole Genome Sequencing , Anti-Bacterial Agents/pharmacology , Drug Resistance, Multiple, Bacterial/genetics , Female , Genome, Bacterial , Humans , Klebsiella Infections/microbiology , Klebsiella oxytoca/drug effects , Klebsiella pneumoniae/genetics , Male , Retrospective Studies , Species Specificity , Virulence/drug effects , Virulence/genetics , Virulence Factors
10.
Front Cell Infect Microbiol ; 11: 681518, 2021.
Article in English | MEDLINE | ID: mdl-34141631

ABSTRACT

Clostridioides difficile causes nosocomial outbreaks which can lead to severe and even life-threatening colitis. Rapid molecular diagnostic tests allow the identification of toxin-producing, potentially hypervirulent strains, which is critical for patient management and infection control. PCR-ribotyping has been used for decades as the reference standard to investigate transmission in suspected outbreaks. However, the introduction of whole genome sequencing (WGS) for molecular epidemiology provides a realistic alternative to PCR-ribotyping. In this transition phase it is crucial to understand the strengths and weaknesses of the two technologies, and to assess their correlation. We aimed to investigate ribotype prediction from WGS data, and options for analysis at different levels of analytical granularity. Ribotypes cannot be directly determined from short read Illumina sequence data as the rRNA operons including the ribotype-defining ISR fragments collapse in genome assemblies, and comparison with traditional PCR-ribotyping results becomes impossible. Ribotype extraction from long read Oxford nanopore data also requires optimization. We have compared WGS-based typing with PCR-ribotyping in nearly 300 clinical and environmental isolates from Switzerland, and in addition from the Enterobase database (n=1778). Our results show that while multi-locus sequence type (MLST) often correlates with a specific ribotype, the agreement is not complete, and for some ribotypes the resolution is insufficient. Using core genome MLST (cgMLST) analysis, there is an improved resolution and ribotypes can often be predicted within clusters, using cutoffs of 30-50 allele differences. The exceptions are ribotypes within known ribotype complexes such as RT078/RT106, where the genome differences in cgMLST do not reflect the ribotype segregation. We show that different ribotype clusters display different degrees of diversity, which could be important for the definition of ribotype cluster specific cutoffs. WGS-based analysis offers the ultimate resolution to the SNP level, enabling exploration of patient-to-patient transmission. PCR-ribotyping does not sufficiently discriminate to prove nosocomial transmission with certainty. We discuss the associated challenges and opportunities in a switch to WGS from conventional ribotyping for C. difficile.


Subject(s)
Clostridioides difficile , Clostridium Infections , Clostridioides , Clostridioides difficile/genetics , Clostridium Infections/diagnosis , Humans , Multilocus Sequence Typing , Polymerase Chain Reaction , Ribotyping , Switzerland , Whole Genome Sequencing
11.
Microorganisms ; 9(5)2021 May 18.
Article in English | MEDLINE | ID: mdl-34069761

ABSTRACT

Pneumococcal conjugate vaccines (PCVs) have lowered the incidence of invasive pneumococcal disease (IPD) worldwide. However, the influence of regional vaccine uptake differences on the changing epidemiology of IPD remains unclear. We aimed to examine the overall impact of both seven- and 13-valent PCVs (PCV7 and PCV13) on IPD in Switzerland. Three-year periods from 2005-2010 and 2011-2019 were considered, respectively, as (early and late) PCV7 eras and (early, mid and late) PCV13 eras. Vaccine coverage was estimated from a nationwide survey according to east (German-speaking) and west (French/Italian-speaking) regions for each period. Reported incidence rate ratios (IRRs) were compared between successive periods and regions using nationwide IPD surveillance data. Overall IPD incidence across all ages was only 16% lower in the late PCV13 era compared to the early PCV7 era (IRR 0.83, 95% CI 0.79-0.88), due to increasing incidence of non-PCV-type IPD (2.59, 2.37-2.83) in all age groups, except children <5 years. PCV uptake rates in swiss children were slightly higher in the west than the east (p < 0.001), and were accompanied by lower IPD incidences across all age groups in the former region. Post-PCV13, non-PCV serotypes 8, 22F and 9N were the major cause of IPD in adults ≥65 years. Increased PCV coverage in both areas of Switzerland resulted in a decrease in vaccine-type and overall IPD incidence across all age groups, in a regionally dependent manner. However, the rising incidence of non-vaccine-type IPD, exclusive to older adults, may undermine indirect beneficial effects.

12.
Lancet Digit Health ; 3(6): e360-e370, 2021 06.
Article in English | MEDLINE | ID: mdl-34045002

ABSTRACT

BACKGROUND: Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis, which are typically transmitted via respiratory droplets, are leading causes of invasive diseases, including bacteraemic pneumonia and meningitis, and of secondary infections subsequent to post-viral respiratory disease. The aim of this study was to investigate the incidence of invasive disease due to these pathogens during the early months of the COVID-19 pandemic. METHODS: In this prospective analysis of surveillance data, laboratories in 26 countries and territories across six continents submitted data on cases of invasive disease due to S pneumoniae, H influenzae, and N meningitidis from Jan 1, 2018, to May, 31, 2020, as part of the Invasive Respiratory Infection Surveillance (IRIS) Initiative. Numbers of weekly cases in 2020 were compared with corresponding data for 2018 and 2019. Data for invasive disease due to Streptococcus agalactiae, a non-respiratory pathogen, were collected from nine laboratories for comparison. The stringency of COVID-19 containment measures was quantified using the Oxford COVID-19 Government Response Tracker. Changes in population movements were assessed using Google COVID-19 Community Mobility Reports. Interrupted time-series modelling quantified changes in the incidence of invasive disease due to S pneumoniae, H influenzae, and N meningitidis in 2020 relative to when containment measures were imposed. FINDINGS: 27 laboratories from 26 countries and territories submitted data to the IRIS Initiative for S pneumoniae (62 837 total cases), 24 laboratories from 24 countries submitted data for H influenzae (7796 total cases), and 21 laboratories from 21 countries submitted data for N meningitidis (5877 total cases). All countries and territories had experienced a significant and sustained reduction in invasive diseases due to S pneumoniae, H influenzae, and N meningitidis in early 2020 (Jan 1 to May 31, 2020), coinciding with the introduction of COVID-19 containment measures in each country. By contrast, no significant changes in the incidence of invasive S agalactiae infections were observed. Similar trends were observed across most countries and territories despite differing stringency in COVID-19 control policies. The incidence of reported S pneumoniae infections decreased by 68% at 4 weeks (incidence rate ratio 0·32 [95% CI 0·27-0·37]) and 82% at 8 weeks (0·18 [0·14-0·23]) following the week in which significant changes in population movements were recorded. INTERPRETATION: The introduction of COVID-19 containment policies and public information campaigns likely reduced transmission of S pneumoniae, H influenzae, and N meningitidis, leading to a significant reduction in life-threatening invasive diseases in many countries worldwide. FUNDING: Wellcome Trust (UK), Robert Koch Institute (Germany), Federal Ministry of Health (Germany), Pfizer, Merck, Health Protection Surveillance Centre (Ireland), SpID-Net project (Ireland), European Centre for Disease Prevention and Control (European Union), Horizon 2020 (European Commission), Ministry of Health (Poland), National Programme of Antibiotic Protection (Poland), Ministry of Science and Higher Education (Poland), Agencia de Salut Pública de Catalunya (Spain), Sant Joan de Deu Foundation (Spain), Knut and Alice Wallenberg Foundation (Sweden), Swedish Research Council (Sweden), Region Stockholm (Sweden), Federal Office of Public Health of Switzerland (Switzerland), and French Public Health Agency (France).


Subject(s)
Bacterial Infections/epidemiology , COVID-19 , Respiratory Tract Infections/epidemiology , Bacterial Infections/transmission , COVID-19/prevention & control , Haemophilus influenzae , Humans , Incidence , Interrupted Time Series Analysis , Neisseria meningitidis , Population Surveillance , Prospective Studies , Public Health Practice , Streptococcus agalactiae , Streptococcus pneumoniae
13.
BMC Infect Dis ; 21(1): 408, 2021 May 03.
Article in English | MEDLINE | ID: mdl-33941088

ABSTRACT

BACKGROUND: In non-pregnant adults, the incidence of invasive Group B Streptococcus (GBS) disease is continuously increasing. Elderly and immunocompromised persons are at increased risk of infection. GBS commonly colonizes the vaginal tract, though data on colonization in the elderly are scarce. It is unknown whether the prevalence of GBS colonization is increasing in parallel to the observed rise of invasive infection. We conducted a three-year (2017-2019) prospective observational cross-sectional study in two teaching hospitals in Switzerland to determine the rate of GBS vaginal colonization in women over 60 years and i) to compare the proportions of known risk factors associated with invasive GBS diseases in colonized versus non-colonized women and ii) to evaluate the presence of GBS clusters with specific phenotypic and genotypic patterns in this population. METHODS: GBS screening was performed by using vaginal swabs collected during routine examination from women willing to participate in the study and to complete a questionnaire for risk factors. Isolates were characterized for antibiotic resistance profile, serotype and sequence type (ST). RESULTS: The GBS positivity rate in the elderly was 17% (44/255 positive samples), and similar to the one previously reported in pregnant women (around 20%). We could not find any association between participants' characteristics, previously published risk factors and GBS colonization. All strains were susceptible to penicillin, 22% (8/36) were not susceptible to erythromycin, 14% (5/36) were not susceptible to clindamycin and 8% (3/36) showed inducible clindamycin resistance. Both M and L phenotypes were each detected in one isolate. The most prevalent serotypes were III (33%, 12/36) and V (31%, 11/36). ST1 and ST19 accounted for 11% of isolates each (4/36); ST175 for 8% (3/36); and ST23, ST249 and ST297 for 6% each (2/36). Significantly higher rates of resistance to macrolides and clindamycin were associated with the ST1 genetic background of ST1. CONCLUSIONS: Our findings indicate a similar colonization rate for pregnant and elderly women. TRIAL REGISTRATION: Current Controlled Trial ISRCTN15468519 ; 06/01/2017.


Subject(s)
Streptococcal Infections/microbiology , Streptococcus agalactiae/drug effects , Streptococcus agalactiae/isolation & purification , Vagina/microbiology , Aged , Aged, 80 and over , Anti-Bacterial Agents/pharmacology , Cross-Sectional Studies , Drug Resistance, Bacterial/drug effects , Female , Genotype , Humans , Microbial Sensitivity Tests , Middle Aged , Pregnancy , Prevalence , Prospective Studies , Serogroup , Streptococcal Infections/epidemiology , Streptococcus agalactiae/classification , Streptococcus agalactiae/genetics , Switzerland/epidemiology
14.
Int J Mol Sci ; 22(9)2021 Apr 27.
Article in English | MEDLINE | ID: mdl-33925509

ABSTRACT

The structure of the exopolysaccharide capsule of Streptococcus pneumoniae is defined by the genetic arrangement of the capsule operon allowing the unequivocal identification of the pneumococcal serotype. Here, we investigated the environment-dependent composition of the polysaccharide structure of S. pneumoniae serotype 6F. When grown in a chemically defined medium (CDM) with glucose versus galactose, the exopolysaccharide capsule of the serotype 6F strains reveals a ratio of 1/0.6 or 1/0.3 for galactose/glucose in the capsule by 1H-NMR analyses, respectively. Increased production of the capsule precursor UDP-glucose has been identified by 31P-NMR in CDM with glucose. Flow cytometric experiments using monoclonal antibodies showed decreased labelling of Hyp6AG4 (specific for serotype 6A) antibodies when 6F is grown in glucose as compared to galactose, which mirrors the 1H-NMR results. Whole-genome sequencing analyses of serotype 6F isolates suggested that the isolates evolved during two different events from serotype 6A during the time when the 13-valent pneumococcal conjugate vaccine (PCV-13) was introduced. In conclusion, this study shows differences in the capsular structure of serotype 6F strains using glucose as compared to galactose as the carbon source. Therefore, 6F strains may show slightly different polysaccharide composition while colonizing the human nasopharynx (galactose rich) as compared to invasive locations such as the blood (glucose rich).


Subject(s)
Carbon/metabolism , Polysaccharides, Bacterial/chemistry , Streptococcus pneumoniae/chemistry , Streptococcus pneumoniae/genetics , Antibodies, Monoclonal/metabolism , Biological Evolution , Flow Cytometry , Galactose/metabolism , Genome, Bacterial , Glucose/metabolism , Humans , Magnetic Resonance Spectroscopy/methods , Nasopharynx/microbiology , Phosphorus , Phylogeny , Pneumococcal Infections/microbiology , Serogroup , Streptococcus pneumoniae/classification , Streptococcus pneumoniae/isolation & purification
15.
J Clin Microbiol ; 58(6)2020 05 26.
Article in English | MEDLINE | ID: mdl-32229603

ABSTRACT

Amplicon sequencing of the 16S rRNA gene is commonly used for the identification of bacterial isolates in diagnostic laboratories and mostly relies on the Sanger sequencing method. The latter, however, suffers from a number of limitations, with the most significant being the inability to resolve mixed amplicons when closely related species are coamplified from a mixed culture. This often leads to either increased turnaround time or absence of usable sequence data. Short-read next-generation sequencing (NGS) technologies could solve the mixed amplicon issue but would lack both cost efficiency at low throughput and fast turnaround times. Nanopore sequencing developed by Oxford Nanopore Technologies (ONT) could solve those issues by enabling a flexible number of samples per run and an adjustable sequencing time. Here, we report on the development of a standardized laboratory workflow combined with a fully automated analysis pipeline LORCAN (long read consensus analysis), which together provide a sample-to-report solution for amplicon sequencing and taxonomic identification of the resulting consensus sequences. Validation of the approach was conducted on a panel of reference strains and on clinical samples consisting of single or mixed rRNA amplicons associated with various bacterial genera by direct comparison to the corresponding Sanger sequences. Additionally, simulated read and amplicon mixtures were used to assess LORCAN's behavior when dealing with samples with known cross-contamination levels. We demonstrate that by combining ONT amplicon sequencing results with LORCAN, the accuracy of Sanger sequencing can be closely matched (>99.6% sequence identity) and that mixed samples can be resolved at the single-base resolution level. The presented approach has the potential to significantly improve the flexibility, reliability, and availability of amplicon sequencing in diagnostic settings.


Subject(s)
Nanopore Sequencing , Bacteria/genetics , High-Throughput Nucleotide Sequencing , Humans , RNA, Ribosomal, 16S/genetics , Reproducibility of Results
16.
Open Forum Infect Dis ; 7(1): ofz551, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31988977

ABSTRACT

We present a successful treatment, with tigecycline monotherapy, of acute prostatitis caused by multidrug-resistant Escherichia coli harboring an NDM-1 carbapemenase along with a CMY-2 cephalosporinase and a TEM ESBL.

17.
Article in English | MEDLINE | ID: mdl-31700617

ABSTRACT

Background: A number of episodes of nosocomial Agrobacterium spp. bacteremia (two cases per year) were observed at Bern University Hospital, Switzerland, from 2015 to 2017. This triggered an outbreak investigation. Methods: Cases of Agrobacterium spp. bacteremias that occurred between August 2011 and February 2017 were investigated employing line lists, environmental sampling, rapid protein- (MALDI-TOF MS), and genome-based typing (pulsed field gel electrophoresis and whole genome sequencing) of the clinical isolates. Results: We describe a total of eight bacteremia episodes due to A. radiobacter (n = 2), Agrobacterium genomovar G3 (n = 5) and A. pusense (n = 1). Two tight clusters were observed by WGS typing, representing the two A. radiobacter isolates (cluster I, isolated in 2015) and four of the Agrobacterium genomovar G3 isolates (cluster II, isolated in 2016 and 2017), suggesting two different point sources. The epidemiological investigations revealed two computer tomography (CT) rooms as common patient locations, which correlated with the two outbreak clusters. MALDI-TOF MS permitted faster evaluation of strain relatedness than DNA-based methods. High resolution WGS-based typing confirmed the MALDI-TOF MS clustering. Conclusions: We report clinical and epidemiological characteristics of two outbreak clusters with Agrobacterium. spp. bacteremia likely acquired during CT contrast medium injection and highlight the use of MALDI-TOF MS as a rapid tool to assess relatedness of rare gram-negative pathogens in an outbreak investigation.


Subject(s)
Agrobacterium/classification , Agrobacterium/genetics , Cross Infection/epidemiology , Cross Infection/microbiology , Disease Outbreaks , Gram-Negative Bacterial Infections/epidemiology , Gram-Negative Bacterial Infections/microbiology , Adult , Aged , Aged, 80 and over , Agrobacterium/isolation & purification , Bacterial Typing Techniques , Electrophoresis, Gel, Pulsed-Field , Female , Genome, Bacterial , Germany/epidemiology , Humans , Male , Middle Aged , Phylogeny , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Tertiary Care Centers , Whole Genome Sequencing , Young Adult
18.
Emerg Infect Dis ; 25(6): 1084-1092, 2019 06.
Article in English | MEDLINE | ID: mdl-31107229

ABSTRACT

A recent hospital outbreak related to premoistened gloves used to wash patients exposed the difficulties of defining Burkholderia species in clinical settings. The outbreak strain displayed key B. stabilis phenotypes, including the inability to grow at 42°C; we used whole-genome sequencing to confirm the pathogen was B. stabilis. The outbreak strain genome comprises 3 chromosomes and a plasmid, sharing an average nucleotide identity of 98.4% with B. stabilis ATCC27515 BAA-67, but with 13% novel coding sequences. The genome lacks identifiable virulence factors and has no apparent increase in encoded antimicrobial drug resistance, few insertion sequences, and few pseudogenes, suggesting this outbreak was an opportunistic infection by an environmental strain not adapted to human pathogenicity. The diversity among outbreak isolates (22 from patients and 16 from washing gloves) is only 6 single-nucleotide polymorphisms, although the genome remains plastic, with large elements stochastically lost from outbreak isolates.


Subject(s)
Burkholderia Infections/epidemiology , Burkholderia Infections/microbiology , Burkholderia/genetics , Genome, Bacterial , Burkholderia/cytology , Burkholderia/metabolism , Cross Infection/epidemiology , Cross Infection/microbiology , Fatty Acids/chemistry , Fatty Acids/metabolism , Humans , Switzerland/epidemiology
19.
Int J Syst Evol Microbiol ; 69(6): 1696-1704, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30950782

ABSTRACT

Among the species Mycobacterium kansasii, seven subtypes have been previously reported based on the PCR and the restriction fragment length polymorphism of the gene hsp65. Here, we used whole-genome sequencing to refine M. kansasii taxonomy and correct multiple inconsistencies. Average nucleotide identity (ANI) values between M. kansasii subtypes ranged from 88.4 to 94.2 %, lower than the accepted 95-96 % cut-off for species delineation. In addition, Mycobacterium gastri was closer to the M. kansasii subtypes 1, 2, 3, 4 and 5 than M. kansasii subtype 6. The recently described species Mycobacterium persicum shared 99.77 % ANI with M. kansasii subtype 2. Consistent with the ANI results, the digital DNA-DNA hybridization value was below the 70 % threshold for species delineation between subtypes and above it within subtypes as well as between subtype 2 and M. persicum. Furthermore, core-genome phylogeny confirmed the current M. kansasii species to be polyphyletic. Hence, we propose (i) Mycobacterium pseudokansasii sp. nov., replacing subtype 3, with the type strain MK142T(=CCUG 72128T=DSM 107152T), (ii) Mycobacterium innocens sp. nov., replacing subtype 5, with the type strain MK13T (=CCUG 72126T=DSM 107161T), and (iii) Mycobacterium attenuatum sp. nov., replacing subtype 6, with the type strain MK41T(=CCUG 72127T=DSM 107153T). Subtype 4 represents a new species-level lineage based on the genomic data but no strain was available. No genome sequence or strain was available for subtype 7. The proposed nomenclature will facilitate the identification of the most pathogenic subtype 1 as M. kansasii by clinicians while the new species names suggest the attenuated pathogenicity of the other subtypes.


Subject(s)
Mycobacterium kansasii/classification , Mycobacterium/classification , Phylogeny , Whole Genome Sequencing , Bacterial Typing Techniques , DNA, Bacterial/genetics , Nucleic Acid Hybridization , Sequence Analysis, DNA
20.
Euro Surveill ; 23(29)2018 07.
Article in English | MEDLINE | ID: mdl-30043725

ABSTRACT

A large outbreak of vancomycin-resistant enterococci (VRE) is affecting four hospitals in the Canton of Bern, Switzerland, since December 2017. Of 89 cases identified as carriers, 77 (86.5%) VRE isolates were virtually indistinguishable using whole genome sequencing, and identified as multilocus sequence type (MLST) ST796. This clone, previously only described in Australia and New Zealand, is characterised by rapid spread and the ability to cause bloodstream infections. It requires a multifaceted infection prevention effort.


Subject(s)
Anti-Bacterial Agents/pharmacology , Cross Infection/microbiology , Disease Outbreaks , Enterococcus faecium/classification , Enterococcus faecium/genetics , Gram-Positive Bacterial Infections/microbiology , Vancomycin Resistance/genetics , Vancomycin-Resistant Enterococci/genetics , Vancomycin/pharmacology , Adult , Cross Infection/epidemiology , Electrophoresis, Gel, Pulsed-Field , Enterococcus faecium/drug effects , Female , Gram-Positive Bacterial Infections/epidemiology , Humans , Male , Microbial Sensitivity Tests , Middle Aged , Multilocus Sequence Typing , Switzerland/epidemiology , Vancomycin-Resistant Enterococci/drug effects , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...