Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 7544, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37985657

ABSTRACT

Microwave photonics (MWP) has unlocked a new paradigm for Radio Frequency (RF) signal processing by harnessing the inherent broadband and tunable nature of photonic components. Despite numerous efforts made to implement integrated MWP filters, a key RF processing functionality, it remains a long-standing challenge to achieve a fully integrated photonic circuit that can merge the megahertz-level spectral resolution required for RF applications with key electro-optic components. Here, we overcome this challenge by introducing a compact 5 mm × 5 mm chip-scale MWP filter with active E-O components, demonstrating 37 MHz spectral resolution. We achieved this device by heterogeneously integrating chalcogenide waveguides, which provide Brillouin gain, in a complementary metal-oxide-semiconductor (CMOS) foundry-manufactured silicon photonic chip containing integrated modulators and photodetectors. This work paves the way towards a new generation of compact, high-resolution RF photonic filters with wideband frequency tunability demanded by future applications, such as air and spaceborne RF communication payloads.

2.
Opt Lett ; 43(15): 3493-3496, 2018 Aug 01.
Article in English | MEDLINE | ID: mdl-30067693

ABSTRACT

Recent advances in design and fabrication of photonic-phononic waveguides have enabled stimulated Brillouin scattering in silicon-based platforms such as underetched silicon waveguides and hybrid waveguides. Due to the sophisticated design and, more importantly, high sensitivity of the Brillouin resonances to geometrical variations in micro- and nano-scale structures, it is necessary to have access to the localized opto-acoustic response along those waveguides to monitor their uniformity and maximize their interaction strength. In this Letter, we design and fabricate photonic-phononic waveguides with a deliberate width variation on a hybrid silicon-chalcogenide photonic chip and confirm the effect of the geometrical variation on the localized Brillouin response using a distributed Brillouin measurement.

3.
Opt Lett ; 41(24): 5776-5779, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27973499

ABSTRACT

We demonstrate a compact silicon-on-sapphire (SOS) strip waveguide sensor for mid-IR absorption spectroscopy. This device can be used for gas and liquid sensing, especially to detect chemically similar molecules and precisely characterize extremely absorptive liquids that are difficult to detect by conventional infrared transmission techniques. We reliably measure concentrations up to 0.25% of heavy water (D2O) in a D2O-H2O mixture at its maximum absorption band at around 4 µm. This complementary metal-oxide-semiconductor (CMOS) compatible SOS D2O sensor is promising for applications such as measuring body fat content or detection of coolant leakage in nuclear reactors.

4.
Opt Lett ; 40(17): 4154-7, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26368735

ABSTRACT

We demonstrate the first, to the best of our knowledge, functional signal processing device based on stimulated Brillouin scattering in a silicon nanowire. We use only 1 dB of on-chip stimulated Brillouin scattering gain to create an RF photonic notch filter with 48 dB of suppression, 98 MHz linewidth, and 6 GHz frequency tuning. This device has potential applications in on-chip microwave signal processing and establishes the foundation for the first CMOS-compatible high-performance RF photonic filter.

SELECTION OF CITATIONS
SEARCH DETAIL
...