Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Physiol Genomics ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007510

ABSTRACT

The prevalence of metabolic syndrome in cardiac diseases such as heart failure with preserved ejection fraction (HFpEF) prompts the scientific community to investigate its adverse effects on cardiac function and remodeling. However, the selection of a preclinical model of obesity-induced cardiac remodeling has proven more challenging with inconsistencies often found in very similar mouse models. Here, we investigated the implication of genetic background as well as diet composition to identify a suitable model of diet-induced cardiac alterations. C57Bl/6J and C57Bl/6N male mice were subjected to distinct obesogenic diets consisting of high-fat and moderate-sucrose content (HF-S) or High-Sucrose and moderate-lipid content (F-HS) versus matching control diets. 5-month dietary intervention with obesogenic diets induced weight gain, adipocyte hypertrophy and increased visceral and subcutaneous fat mass in both substrains. Obese mice showed similar impairment of glucose disposition and insulin tolerance, both strains developing insulin resistance within two months. However, echocardiographic follow-up and histological analysis confirmed that HF-S diet increases cardiac hypertrophy, interstitial fibrosis as well as left atrial area in the C57Bl/6J strain only. On the contrary C57Bl/6N exhibit cardiac eccentric remodeling under control diets, possibly owing to a genetic mutation in the myosin light-chain-kinase 3 (Mylk3) gene, specific to this substrain, which was not further enhanced under obesogenic diets. Altogether, the present results highlight the importance of carefully selecting the suitable mouse strain and diets to model diet-induced cardiac remodeling. In this regard, C57Bl/6J mice develop significant cardiac remodeling in response to HF-S, and seem a suitable model for cardiometabolic disease.

2.
Int J Mol Sci ; 23(12)2022 Jun 07.
Article in English | MEDLINE | ID: mdl-35742830

ABSTRACT

The head and neck tumor microenvironment (TME) is highly infiltrated with macrophages. More specifically, tumor-associated macrophages (TAM/M2-like) are one of the most critical components associated with poor overall survival in head and neck cancers (HNC). Two extreme states of macrophage phenotypes are described as conducting pro-inflammatory/anti-tumoral (M1) or anti-inflammatory/pro-tumoral (M2) activities. Moreover, specific metabolic pathways as well as oxidative stress responses are tightly associated with their phenotypes and functions. Hence, due to their plasticity, targeting M2 macrophages to repolarize in the M1 phenotype would be a promising cancer treatment. In this context, we evaluated macrophage infiltration in 60 HNC patients and demonstrated the high infiltration of CD68+ cells that were mainly related to CD163+ M2 macrophages. We then optimized a polarization protocol from THP1 monocytes, validated by specific gene and protein expression levels. In addition, specific actors of glutamine pathway and oxidative stress were quantified to indicate the use of glutaminolysis by M2 and the production of reactive oxygen species by M1. Finally, we evaluated and confirmed the plasticity of our model using M1 activators to repolarize M2 in M1. Overall, our study provides a complete reversible polarization protocol allowing us to further evaluate various reprogramming effectors targeting glutaminolysis and/or oxidative stress in macrophages.


Subject(s)
Head and Neck Neoplasms , Macrophages , Head and Neck Neoplasms/pathology , Humans , Macrophages/metabolism , Phenotype , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL