Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
1.
Eur J Neurosci ; 57(12): 2097-2111, 2023 06.
Article in English | MEDLINE | ID: mdl-36922400

ABSTRACT

Stochastic resonance (SR) is a phenomenon in which a certain amount of random noise added to a weak subthreshold stimulus can enhance signal detectability. It is unknown how external noise interacts with neural noise in producing an SR-like phenomenon and whether this interaction results in a modulation of either network efficiency or the efficiency of single neurons. Using random dot motion stimuli and noninvasive brain stimulation, we attempted to unveil the specific mechanism of action of the SR-like phenomenon in motion perception, if present. We aimed to determine whether signal integration efficiency changes with external noise (random dot numerosity) and how electrical transcranial random noise stimulation (tRNS) can affect the peak performance. The participants performed a coherent motion detection task in which the random dot numerosity varied, whereas the signal-to-noise ratio (SNR) remained constant. We applied placebo or tRNS with an amplitude of either 1 or 2 mA during task execution. We found peaks in participants' performance both in the case of placebo stimulation and in the case of 1-mA tRNS. In the latter case (i.e., with an additional noise source), the peak emerged at lower random dot numerosity levels than when no additional noise was added (placebo). No clear peak was observed with 2-mA tRNS. An equivalent noise (EN) analysis confirmed that SR arises from a modulation of the network efficiency underlying motion signal integration. These results indicate a joint contribution of external and neural noise (modulated by tRNS) in eliciting an SR-like phenomenon.


Subject(s)
Motion Perception , Transcranial Direct Current Stimulation , Humans , Transcranial Direct Current Stimulation/methods , Motion Perception/physiology , Brain , Noise , Vibration
2.
Restor Neurol Neurosci ; 40(3): 137-168, 2022.
Article in English | MEDLINE | ID: mdl-35964213

ABSTRACT

BACKGROUND: Vision is the sense which we rely on the most to interact with the environment and its integrity is fundamental for the quality of our life. However, around the globe, more than 1 billion people are affected by debilitating vision deficits. Therefore, finding a way to treat (or mitigate) them successfully is necessary. OBJECTIVE: This narrative review aims to examine options for innovative treatment of visual disorders (retinitis pigmentosa, macular degeneration, optic neuropathy, refractory disorders, hemianopia, amblyopia), especially with Perceptual Learning (PL) and Electrical Stimulation (ES). METHODS: ES and PL can enhance visual abilities in clinical populations, inducing plastic changes. We describe the experimental set-ups and discuss the results of studies using ES or PL or their combination in order to suggest, based on literature, which treatment is the best option for each clinical condition. RESULTS: Positive results were obtained using ES and PL to enhance visual functions. For example, repetitive transorbital Alternating Current Stimulation (rtACS) appeared as the most effective treatment for pre-chiasmatic disorders such as optic neuropathy. A combination of transcranial Direct Current Stimulation (tDCS) and visual training seems helpful for people with hemianopia, while transcranial Random Noise Stimulation (tRNS) makes visual training more efficient in people with amblyopia and mild myopia. CONCLUSIONS: This narrative review highlights the effect of different ES montages and PL in the treatment of visual disorders. Furthermore, new options for treatment are suggested. It is noteworthy to mention that, in some cases, unclear results emerged and others need to be more deeply investigated.


Subject(s)
Amblyopia , Optic Nerve Diseases , Transcranial Direct Current Stimulation , Brain , Hemianopsia , Humans , Transcranial Direct Current Stimulation/methods , Vision Disorders/therapy
3.
Restor Neurol Neurosci ; 39(1): 45-59, 2021.
Article in English | MEDLINE | ID: mdl-33554927

ABSTRACT

BACKGROUND: Several visual functions are impaired in patients with oculocutaneous albinism (OCA) associated to albinistic bilateral amblyopia (ABA). OBJECTIVE: In this study, we aimed at exploring whether perceptual learning (PL) can improve visual functions in albinism. METHOD: Six patients and six normal sighted controls, were trained in a contrast detection task with lateral masking. Participants were asked to choose which of the two intervals contained a foveally presented low-contrast Gabor patch. Targets were presented between higher contrast collinear flankers with equal spatial frequency. When increasing target-to-flanker distance, lateral interactions effect normally switches from inhibition to facilitation, up to no effect. RESULTS: Our findings showed that before PL, only controls showed facilitation. After PL, results suggest that facilitatory lateral interactions are found both in controls as well as in albino patients. These results suggest that PL could induce higher processing efficiency at early cortical level. Moreover, PL positive effect seems to transfer to higher-level visual functions, but results were not very consistent among tasks (visual acuity, contrast sensitivity function, hyperacuity and foveal crowding). CONCLUSIONS: Although a small sample size was tested, our findings suggest a rehabilitative potential of PL in improving visual functions in albinism.


Subject(s)
Albinism , Amblyopia , Amblyopia/therapy , Contrast Sensitivity , Humans , Photic Stimulation , Pilot Projects
4.
Psychol Res ; 85(7): 2782-2791, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33025210

ABSTRACT

Motion perception is complex for the brain to process, involving interacting computations of distance, time, and speed. These computations can be biased by the context and the features of the perceived moving object, giving rise to several types of motion illusions. Recent research has shown that, in addition to object features and context, lifelong priors can bias attributes of perception. In the present work, we investigated if such long acquired expectations can bias speed perception. Using a two-interval forced-choice (2-IFC) task, we asked 160 participants in different experiments to judge which of two vehicles, one archetypically fast (e.g. a motorbike), and one comparatively slower (e.g. a bike), was faster. By varying the objective speeds of the two-vehicle types, and measuring the participants' point of subjective equality, we observed a consistent bias in participants' speed perception. Counterintuitively, in the first three experiments the speed of an archetypically slow vehicle had to be decreased relative to that of an archetypically fast vehicle, for the two to be judged as the same. Similarly, in the next three experiments, an archetypically fast vehicle's speed had to be increased relative to an archetypically slow vehicle's speed, for the two to be perceived as equal. Four additional control experiments replicated our results. We define this newly found bias as the expected-speed violation illusion (ESVI). We believe the ESVI as conceptually very similar to the size-weight illusion, and discuss it within the Bayesian framework of human perception.


Subject(s)
Illusions , Motion Perception , Bayes Theorem , Bias , Humans , Motion
5.
Vision Res ; 179: 64-74, 2021 02.
Article in English | MEDLINE | ID: mdl-33310233

ABSTRACT

Previous studies showed that the lateral masking of a fast-moving low spatial frequency (SF) target was strong when exerted by static flankers of lower or equal to the target SF and absent when flankers' SF was higher than the target's one. These masking and unmasking effects have been interpreted as due to Magnocellular-Magnocellular (M-M) inhibition and Parvocellular-on-Magnocellular (P-M) disinhibitory coactivation, respectively. Based on the hypothesis that the balance between the two systems is perturbed in Developmental Dyslexia (DD), we asked whether dyslexic children (DDs) behaved differently than Typically Developing children (TDs) in conditions of lateral masking. DDs and TDs performed a motion discrimination task, of a .5c/deg Gabor target moving at 16 deg/sec, either isolated or flanked by static Gabors with a SF of .125, .5 or 2 c/deg (Experiment 1). As a control, they also performed a contrast detection task of a static target, either isolated or flanked (Experiment 2). DDs did not perform any different from TDs with either a static target or an isolated moving target of low spatial frequency, thus suggesting efficient feedforward Magnocellular (M) and Parvocellular (P) processing. Also, DDs showed similar contrast thresholds to TDs in the M-M inhibition condition. Conversely, DDs did not recover from lateral masking in the M-P coactivation condition. In addition, their performance in this condition negatively correlated with non-words accuracy, supporting the suggestion that an inefficient Magno-Parvo coactivation may possibly be associated to both higher visual suppression and reduced perceptual stability during reading.


Subject(s)
Dyslexia , Child , Humans , Reading , Visual Pathways
6.
Restor Neurol Neurosci ; 38(5): 395-405, 2020.
Article in English | MEDLINE | ID: mdl-33016896

ABSTRACT

BACKGROUND: To study motion perception, a stimulus consisting of a field of small, moving dots is often used. Generally, some of the dots coherently move in the same direction (signal) while the rest move randomly (noise). A percept of global coherent motion (CM) results when many different local motion signals are combined. CM computation is a complex process that requires the integrity of the middle-temporal area (MT/V5) and there is evidence that increasing the number of dots presented in the stimulus makes such computation more efficient. OBJECTIVE: In this study, we explored whether anodal direct current stimulation (tDCS) over MT/V5 would increase individual performance in a CM task at a low signal-to-noise ratio (SNR, i.e. low percentage of coherent dots) and with a target consisting of a large number of moving dots (high dot numerosity, e.g. >250 dots) with respect to low dot numerosity (<60 dots), indicating that tDCS favour the integration of local motion signal into a single global percept (global motion). METHOD: Participants were asked to perform a CM detection task (two-interval forced-choice, 2IFC) while they received anodal, cathodal, or sham stimulation on three different days. RESULTS: Our findings showed no effect of cathodal tDCS with respect to the sham condition. Instead, anodal tDCS improves performance, but mostly when dot numerosity is high (>400 dots) to promote efficient global motion processing. CONCLUSIONS: The present study suggests that tDCS may be used under appropriate stimulus conditions (low SNR and high dot numerosity) to boost the global motion processing efficiency, and may be useful to empower clinical protocols to treat visual deficits.


Subject(s)
Motion Perception/physiology , Pattern Recognition, Visual/physiology , Transcranial Direct Current Stimulation , Visual Cortex/physiology , Adult , Female , Humans , Male , Placebos , Psychomotor Performance/physiology , Young Adult
7.
Front Psychol ; 11: 1765, 2020.
Article in English | MEDLINE | ID: mdl-32849045

ABSTRACT

We experience the world around us as a smooth and continuous flow. However, there is growing evidence that the stream of sensory inputs is not elaborated in an analog way but is instead organized in discrete or quasi-discrete temporal processing windows. These discrete windows are suggested to depend on rhythmic neural activity in the alpha (and theta) frequency bands, which in turn reflect changes in neural activity within, and coupling between, cortical areas. In the present study, we investigated a possible causal link between oscillatory brain activity in the alpha range (8-12 Hz) and the temporal resolution of visual perception, which determines whether sequential stimuli are perceived as distinct entities or combined into a single representation. To this aim, we employed a two-flash fusion task while participants received focal transcranial alternating current stimulation (tACS) in extra-striate visual regions including V5/MT of the right hemisphere. Our findings show that 10-Hz tACS, as opposed to a placebo (sham tACS), reduces the temporal resolution of perception, inducing participants to integrate the two stimuli into a unique percept more often. This pattern was observed only in the contralateral visual hemifield, providing further support for a specific effect of alpha tACS. The present findings corroborate the idea of a causal link between temporal windows of integration/segregation and oscillatory alpha activity in V5/MT and extra-striate visual regions. They also stimulate future research on possible ways to shape the temporal resolution of human vision in an individualized manner.

8.
Neuroimage ; 208: 116451, 2020 03.
Article in English | MEDLINE | ID: mdl-31821867

ABSTRACT

Visual crowding is the inability to discriminate objects when presented with nearby flankers and sets a fundamental limit for conscious perception. Beta oscillations in the parietal cortex were found to be associated to crowding, with higher beta amplitude related to better crowding resilience. An open question is whether beta activity directly and selectively modulates crowding. We employed Transcranial Alternating Current Stimulation (tACS) in the beta band (18-Hz), in the alpha band (10-Hz) or in a sham regime, asking whether 18-Hz tACS would selectively improve the perception of crowded stimuli by increasing parietal beta activity. Resting-state electroencephalography (EEG) was measured before and after stimulation to test the influence of tACS on endogenous oscillations. Consistently with our predictions, we found that 18-Hz tACS, as compared to 10-Hz tACS and sham stimulation, reduced crowding. This improvement was found specifically in the contralateral visual hemifield and was accompanied by an increased amplitude of EEG beta oscillations, confirming an effect on endogenous brain rhythms. These results support a causal relationship between parietal beta oscillations and visual crowding and provide new insights into the precise oscillatory mechanisms involved in human vision.


Subject(s)
Alpha Rhythm/physiology , Attention/physiology , Beta Rhythm/physiology , Electroencephalography , Parietal Lobe/physiology , Transcranial Direct Current Stimulation , Vision, Ocular/physiology , Visual Perception/physiology , Adolescent , Adult , Female , Humans , Male , Placebos , Young Adult
9.
PLoS One ; 14(8): e0221122, 2019.
Article in English | MEDLINE | ID: mdl-31408500

ABSTRACT

Rarebit is a simple and user-friendly perimetry that tests the visual field by using tiny supra-threshold dot stimuli. It appears to be especially useful for examining the visual field of children who are under 12 years of age. However, previous data showed that the number of errors was higher in children than adults. We ask whether the different number of errors in these two groups depended on task learning and whether it may be accounted for by sensitivity differences or a response bias. Thirty-one children between 9 and 12 years of age and thirty-nine adults were tested three times with Rarebit perimetry. A bias-free sensitivity index, d', rather than the simple hit rate, revealed a group difference that remained after extensive task repetition. Indeed, d' increased with task learning in a similar way in the two groups so that group difference remained after practice. The response bias differed in the two groups, being conservative in the older group (criterion C >0) and liberal in the younger (criterion C < 0). Both biases disappeared with task learning in the third session, suggesting that response bias cannot account for the group difference in sensitivity after practice. When bias-free measures of sensitivity are used and task learning effects are minimized, Rarebit perimetry may be a more valuable method than simple mean hit rate (MHR) to enlighten sensitivity differences in the visual field assessment within the pediatric population.


Subject(s)
Visual Field Tests/instrumentation , Visual Fields/physiology , Adult , Child , Female , Humans , Male , Reproducibility of Results
10.
Sci Rep ; 9(1): 9284, 2019 06 26.
Article in English | MEDLINE | ID: mdl-31243292

ABSTRACT

Macular degeneration (MD) is the leading cause of low vision in the elderly population worldwide. In case of complete bilateral loss of central vision, MD patients start to show a preferred retinal region for fixation (PRL). Previous literature has reported functional changes that are connected with the emergence of the PRL. In this paper, we question whether the PRL undergoes a use-dependent cortical reorganization that alters the range of spatial lateral interactions between low-level filters. We asked whether there is a modulation of the excitatory/inhibitory lateral interactions or whether contextual influences are well accounted for by the same law that describes the integration response in normal viewers. In a group of 13 MD patients and 7 age-matched controls, we probed contextual influences by measuring the contrast threshold for a vertical target Gabor, flanked by two collinear high-contrast Gabors. Contextual influences of the collinear flankers were indicated by the changes in contrast threshold obtained at different target-to-flanker distances (λs) relative to the baseline orthogonal condition. Results showed that MDs had higher thresholds in the baseline condition and functional impairment in the identification tasks. Moreover, at the shortest λ, we found facilitatory rather than inhibitory contextual influence. No difference was found between the PRL and a symmetrical retinal position (non-PRL). By pulling together data from MD and controls we showed that in the periphery this inversion occurs when the target threshold approach the flankers' contrast (about 1:3 ratio) and that for patients it does occur in both the PRL and a symmetrical retinal position (non-PRL). We conclude that contrary to previous interpretations, this modulation doesn't seem to reflect use-dependent cortical reorganization but rather, it might result from a reduction of contrast gain for the target that promotes target-flankers grouping.


Subject(s)
Eye Movements , Macular Degeneration/diagnostic imaging , Retina/diagnostic imaging , Retinal Diseases/diagnostic imaging , Aged , Aged, 80 and over , Case-Control Studies , Central Serous Chorioretinopathy/diagnostic imaging , Cone-Rod Dystrophies/diagnostic imaging , Female , Humans , Macular Degeneration/pathology , Male , Middle Aged , Retina/pathology , Retinal Diseases/pathology , Retinal Perforations/diagnostic imaging , Scotoma/diagnostic imaging , Stargardt Disease/diagnostic imaging , Vision, Low , Vision, Ocular , Vitelliform Macular Dystrophy/diagnostic imaging
11.
Vision Res ; 159: 61-67, 2019 06.
Article in English | MEDLINE | ID: mdl-30914259

ABSTRACT

The magnocellular deficit theory of dyslexia suggests a selective impairment in contrast detection of stimuli involving pure magnocellular response (e.g. Gabor patches of 0.5 c/deg, 30 Hz, low contrast). An alternative hypothesis is that, dyslexia may be associated with a reduction of typical facilitation that normal readers present for stimuli relying on low-level magno-parvo co-activation, relative to stimuli eliciting pure magno activation. According to this hypothesis, any advantage in contrast sensitivity, produced by either decreasing stimuli temporal frequency (from 30 to 10 Hz, Experiment 1) or using static stimuli of increasing spatial frequency (from 0.5 to 4 c/deg, Experiment 2), would be ascribed to the coexisting responses of the magnocellular and parvocellular systems. In the control group, this advantage in contrast sensitivity was found for a 0.5 c/deg Gabor (either static or flickering at 10 Hz) and for a static Gabor of 4 c/deg. In contrast to magnocellular deficit theory predictions, dyslexic individuals showed no deficit in the unmixed magnocellular response. However, they showed no advantage when the relative weight between magnocellular and parvocellular inputs was thrown off balance in favor of the latter. These results suggest that in order to interpret low-level visual deficits in dyslexia, it is worth considering that fast, feedforward low-frequency representations of spatial structures may result from the coexisting responses of two systems. Our results suggest that in dyslexia, the relative contribution of these two systems in visual processing is perturbed, and that this may have detrimental consequences in word processing, both within the parafovea and the fovea during fixation.


Subject(s)
Contrast Sensitivity/physiology , Dyslexia/physiopathology , Visual Pathways/physiology , Visual Perception/physiology , Adolescent , Child , Child, Preschool , Female , Humans , Male
12.
Vision Res ; 150: 38-43, 2018 09.
Article in English | MEDLINE | ID: mdl-30102923

ABSTRACT

Human sensitivity to speed differences is very high, and relatively high when one has to compare the speed of an object that disappears behind an occluder with a standard. Nevertheless, different speed illusions (by contrast, adaptation, dynamic visual noise) affect proper speed judgment for both visible and occluded moving objects. In the present study, we asked whether an illusion due to non-directional motion noise (random dynamic visual noise, rDVN) intervenes at the level of speed encoding, thus affecting speed discrimination, or at the level of speed decoding by non-sensory decision-making mechanisms, indexed by speed overestimation of visible and invisible motion. In Experiment 1, participants performing a temporal two-Alternative Forced Choice task, judged the speed of a target moving in front of the rDVN or a static visual noise (SVN). In Experiment 2 and 3, the target disappeared behind the rDVN/SVN, and participants reported whether the target reappeared early or late (Experiment 2), or the time to contact (TTC) with the end of the occluded trajectory (Experiment 3). In Experiment 1 and 2, we found that rDVN affected the point of subjective equality (pse) of the individual's psychometric function in a way indicating speed overestimation, while not affecting speed discrimination threshold (just noticeable differences, jnd). In Experiment 3 the rDVN reduced the TTC. Though not entirely consistent, our results suggest that a similar speed decoding mechanism, which read-out motion information to form a perceptual decision, operates regarding of whether motion is visible or invisible.


Subject(s)
Discrimination, Psychological/physiology , Judgment , Motion Perception/physiology , Motion , Pattern Recognition, Visual/physiology , Adult , Bias , Female , Humans , Male , Psychomotor Performance , Young Adult
13.
Restor Neurol Neurosci ; 36(2): 275-291, 2018.
Article in English | MEDLINE | ID: mdl-29526854

ABSTRACT

BACKGROUND: In recent years, the introduction of visual rehabilitation for patients with homonymous visual field defects has been met with both enthusiasm and caution. Despite the evidence that restitutive training results in expansion of the visual field, several concerns have been raised. OBJECTIVE: We tested the effectiveness of a new rehabilitative protocol called "Neuro Restoration Training" (NRT) in reducing visual field defects and in restituting visual functions in the restored hemianopic area. METHODS: Ten patients with homonymous visual field defects (lesion age >6 months) where trained in detecting low contrast Gabor patches randomly presented in the blind field, which refers to regions of 0 dB sensitivity, and along the hemianopic boundary between absolute (0 dB) and partial blindness (>0 dB). Training included static, drifting, and flickering Gabors in different blocks. Positions along the hemianopic boundary were systematically shifted toward the blind field according to the threshold reduction during the training. Before and after the training, we assessed visual field expansion and improvement in different high-level transfer tasks (i.e., letter identification and shape recognition) performed in the hemianopic boundary and in the blind field. RESULTS: NRT led to significant visual field enlargement (≈5 deg), as indicated by the conventional Humphrey perimetry, and two custom made evaluations of visual field expansion with eye movement control (one static and one dynamic). The restored area acquired new visual functions such as small letter recognition and perception of moving shapes. Finally, for some patients, NRT also improved detection, either aware or not, of high contrast flickering grating and recognition of geometrical shapes entirely presented within the blind field. CONCLUSION: These results suggest that NRT may lead to visual field enlargement and translate into untrained visual functions.


Subject(s)
Hemianopsia/rehabilitation , Stroke Rehabilitation , Therapy, Computer-Assisted/methods , Visual Fields/physiology , Adult , Analysis of Variance , Eye Movements/physiology , Female , Functional Laterality , Humans , Male , Middle Aged , Pattern Recognition, Visual/physiology , Recovery of Function , Statistics, Nonparametric , Stroke/complications , Visual Field Tests
14.
Restor Neurol Neurosci ; 35(5): 483-496, 2017.
Article in English | MEDLINE | ID: mdl-28800339

ABSTRACT

BACKGROUND: Amblyopic observers present abnormal spatial interactions between a low-contrast sinusoidal target and high-contrast collinear flankers. It has been demonstrated that perceptual learning (PL) can modulate these low-level lateral interactions, resulting in improved visual acuity and contrast sensitivity. OBJECTIVE: We measured the extent and duration of generalization effects to various spatial tasks (i.e., visual acuity, Vernier acuity, and foveal crowding) through PL on the target's contrast detection. METHODS: Amblyopic observers were trained on a contrast-detection task for a central target (i.e., a Gabor patch) flanked above and below by two high-contrast Gabor patches. The pre- and post-learning tasks included lateral interactions at different target-to-flankers separations (i.e., 2, 3, 4, 8λ) and included a range of spatial frequencies and stimulus durations as well as visual acuity, Vernier acuity, contrast-sensitivity function, and foveal crowding. RESULTS: The results showed that perceptual training reduced the target's contrast-detection thresholds more for the longest target-to-flanker separation (i.e., 8λ). We also found generalization of PL to different stimuli and tasks: contrast sensitivity for both trained and untrained spatial frequencies, visual acuity for Sloan letters, and foveal crowding, and partially for Vernier acuity. Follow-ups after 5-7 months showed not only complete maintenance of PL effects on visual acuity and contrast sensitivity function but also further improvement in these tasks. CONCLUSION: These results suggest that PL improves facilitatory lateral interactions in amblyopic observers, which usually extend over larger separations than in typical foveal vision. The improvement in these basic visual spatial operations leads to a more efficient capability of performing spatial tasks involving high levels of visual processing, possibly due to the refinement of bottom-up and top-down networks of visual areas.


Subject(s)
Amblyopia , Contrast Sensitivity , Learning , Adult , Amblyopia/psychology , Amblyopia/rehabilitation , Child , Female , Follow-Up Studies , Humans , Male , Middle Aged , Photic Stimulation , Treatment Outcome , Young Adult
15.
Brain Stimul ; 10(4): 773-779, 2017.
Article in English | MEDLINE | ID: mdl-28487047

ABSTRACT

BACKGROUND: The effect that transcranial direct current stimulation (tDCS) has on discrimination of coherent motion (CM) signals in a field of randomly moving dots (noise) can be accounted for by both noise reduction and signal enhancement. OBJECTIVE: To distinguish between noise reduction and signal enhancement, we monitored the discrimination of the correct CM direction as a function of the coherence level (using the psychophysical method of constant stimuli). We then analyzed the threshold and slope parameters. METHOD: Thirty observers participated in the experiment; fifteen received cathodal stimulation, and fifteen received anodal stimulation, all over left V5. RESULTS: The results showed that, rather than having opposite effects on CM discriminability, the positive- and negative-polarity tDCS over V5 affected the two parameters differently. When compared to a sham stimulation, anodal tDCS reduced the threshold, thus indicating signal enhancement. On the other hand, cathodal tDCS reduced the steepness of the slope (with better performance at low levels of coherence) compared to the sham stimulation, thus indicating noise reduction. Moreover, the results showed that late perceptual learning improved the participants' performance at medium/high CM similar to what anodal tDCS did. CONCLUSION: These results suggest a dissociation between the neural mechanisms responsible for enhanced CM discriminability: reduction of noisy or uncorrelated motion by cathodal tDCS versus increased activation of weakly correlated motion signals by anodal tDCS or perceptual learning.


Subject(s)
Motion Perception , Transcranial Direct Current Stimulation , Visual Cortex/physiology , Female , Humans , Male , Psychomotor Performance , Young Adult
16.
Front Aging Neurosci ; 9: 45, 2017.
Article in English | MEDLINE | ID: mdl-28303102

ABSTRACT

Visual perception relies on low-level encoding of local orientation. Recent studies show an age-dependent impairment in orientation discrimination of stimuli embedded in external noise, suggesting that encoding of orientation is inefficient in older adults. In the present study we ask whether aging also reduces decoding, i.e., selecting the neural representations of target orientation while discarding those conflicting with it. We compared younger and older participants capability (mean age 24 and 68 years respectively) in discriminating whether the orientation of a Gabor target was left or right from the vertical. We measured (d'), an index of discrimination sensitivity, for orientation offset ranging from 1° to 12°. In the isolated target condition, d' was reduced by aging and, in the older group, did not increase with orientation offset, thus resulting in a larger group difference at large than small orientation offsets from the vertical. Moreover, oriented elements in the background impaired more discrimination in the older group. However, distractors reduced more d' when target-background orientation offset was large than when target and flanker had similar orientation, indicating that the effect of the background was not local, i.e., due to target inhibition by similarly oriented flankers. Altogether, these results indicate that aging reduces the efficiency in discarding the response to orientations differing from the target. Our results suggest that neural decision-making mechanisms, involving not only signal enhancement but also non-signal inhibition, become inefficient with age. This suggestion is consistent with the neurophysiological evidence of inefficient visual cortical inhibition in aging.

17.
Neuropsychologia ; 95: 86-93, 2017 01 27.
Article in English | MEDLINE | ID: mdl-27986635

ABSTRACT

Motion extrapolation (ME), the ability to estimate the current position of moving objects hidden by an occluder, is critical to interact with a dynamic environment. In a typical paradigm, participants estimate time to contact (TTC) by pressing a button when they estimate the occluded moving target reaches a certain cue. Research using this paradigm has shown that motion adaptation of the occluded area produces a shift in the TTC estimate (Gilden et al., 1995). We examined the effect of motion adaptation on the contingent negative variation (CNV), a frontal electrophysiological component (Tecce, 1972) that could reflect the activity of an accumulator (Buhusi and Meck, 2005) for time processing. We predicted that longer TTC estimates due to previous visual motion adaptation would result in a larger CNV because the accumulator can collect more time units. Results showed that motion adaptation actually modulates the CNV, but the CNV amplitude did not correlate with TTC duration, falsifying the accumulator hypothesis. We suggest that motion adaptation interferes with the remembered speed (stored during the visible part of the trajectory) that may be used as input by higher cognitive function to guide the temporal update of target position, regardless of the TTC estimate.


Subject(s)
Adaptation, Psychological/physiology , Brain/physiology , Contingent Negative Variation/physiology , Motion Perception/physiology , Adolescent , Adult , Electroencephalography , Female , Humans , Male , Neuropsychological Tests , Photic Stimulation/methods , Reaction Time , Time Perception/physiology , Young Adult
18.
Front Psychol ; 7: 1369, 2016.
Article in English | MEDLINE | ID: mdl-27683566

ABSTRACT

People experience an object's motion even when it is occluded. We investigate the processing of invisible motion in three experiments. Observers saw a moving circle passing behind an invisible, irregular hendecagonal polygon and had to respond as quickly as possible when the target had "just reappeared" from behind the occluder. Without explicit cues allowing the end of each of the eight hidden trajectories to be predicted (length ranging between 4.7 and 5 deg), we found as expected, if visuospatial attention was involved, anticipation errors, providing that information on pre-occluder motion was available. This indicates that the observers, rather than simply responding when they saw the target, tended to anticipate its reappearance (Experiment 1). The new finding is that, with a fixation mark indicating the center of the invisible trajectory, a linear relationship between the physical and judged occlusion duration is found, but not without it (Experiment 2) or with a fixation mark varying in position from trial to trial (Experiment 3). We interpret the role of central fixation in the differences in distinguishing trajectories smaller than 0.3 deg, by suggesting that it reflects spatiotemporal computation and motion-tracking. These two mechanisms allow visual imagery to form of the point symmetrical to that of the disappearance, with respect to fixation, and then for the occluded moving target to be tracked up to this point.

19.
Acta Psychol (Amst) ; 170: 206-14, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27587358

ABSTRACT

In a series of psychophysical experiments, we altered the perceived speed of a spot (target) using a grayscale texture moving in the same (iso-motion) or opposite (anti-motion) direction of the target. In Experiment 1, using a velocity discrimination task (2IFC), the target moved in front of the texture and was perceived faster with anti-motion than iso-motion texture. The integration and segregation of motion signals in high-level motion areas may have accounted for the illusion. In Experiment 2, by asking observers to estimate the time-to-contact (TTC) with a bar indicating the end of the invisible trajectory, we showed that this illusory visible speed, due to anti- (iso-) texture, reduced (increased) the subsequent estimated duration of occluded target trajectory. However, in Experiment 3, when the target disappeared behind the iso-motion texture, the TTC was estimated shorter than anti- and static textures. In Experiment 4, using an interruption paradigm, we found negative Point of Subjective Equalities (PSEs) with iso-motion but not static texture, suggesting that iso-motion led to overestimation of the hidden speed. However, sensitivity to target speed differences, as assessed by JNDs and d'values was not affected. Results of Experiments 3 and 4 indicate that only the iso-texture affected the estimated target speed, but with opposite polarity compared to visible motion, suggesting a different origin of speed bias. Because our results show that visuospatial tracking was facilitated by the fast iso-motion, we conclude that motion of the occluded target was tracked by shifting visuospatial attention.


Subject(s)
Discrimination, Psychological/physiology , Motion Perception/physiology , Visual Perception/physiology , Adult , Female , Humans , Illusions , Male , Motion , Pattern Recognition, Visual , Psychomotor Performance/physiology , Young Adult
20.
Restor Neurol Neurosci ; 34(5): 697-720, 2016 09 21.
Article in English | MEDLINE | ID: mdl-27567754

ABSTRACT

BACKGROUND: Macular Degeneration (MD), a visual disease that produces central vision loss, is one of the main causes of visual disability in western countries. Patients with MD are forced to use a peripheral retinal locus (PRL) as a substitute of the fovea. However, the poor sensitivity of this region renders basic everyday tasks very hard for MD patients. OBJECTIVE: We investigated whether perceptual learning (PL) with lateral masking in the PRL of MD patients, improved their residual visual functions. METHOD: Observers were trained with two distinct contrast detection tasks: (i) a Yes/No task with no feedback (MD: N = 3; controls: N = 3), and (ii) a temporal two-alternative forced choice task with feedback on incorrect trials (i.e., temporal-2AFC; MD: N = 4; controls: N = 3). Observers had to detect a Gabor patch (target) flanked above and below by two high contrast patches (i.e., lateral masking). Stimulus presentation was monocular with durations varying between 133 and 250 ms. Participants underwent 24- 27 training sessions in total. RESULTS: Both PL procedures produced significant improvements in the trained task and learning transferred to visual acuity. Besides, the amount of transfer was greater for the temporal-2AFC task that induced a significant improvement of the contrast sensitivity for untrained spatial frequencies. Most importantly, follow-up tests on MD patients trained with the temporal-2AFC task showed that PL effects were retained between four and six months, suggesting long-term neural plasticity changes in the visual cortex. CONCLUSION: The results show for the first time that PL with a lateral masking configuration has strong, non-invasive and long lasting rehabilitative potential to improve residual vision in the PRL of patients with central vision loss.


Subject(s)
Feedback, Sensory/physiology , Macular Degeneration/complications , Transfer, Psychology/physiology , Vision Disorders/etiology , Vision Disorders/rehabilitation , Visual Perception/physiology , Adult , Analysis of Variance , Contrast Sensitivity/physiology , Female , Follow-Up Studies , Functional Laterality/physiology , Generalization, Psychological/physiology , Humans , Macular Degeneration/pathology , Male , Middle Aged , Photic Stimulation/methods , Psychophysics , Visual Acuity/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...