Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 35
Filter
Add more filters










Publication year range
1.
Radiother Oncol ; 180: 109457, 2023 03.
Article in English | MEDLINE | ID: mdl-36608770

ABSTRACT

BACKGROUND AND PURPOSE: The implementation of MRI-guided online adaptive radiotherapy has facilitated the extension of therapeutic radiographers' roles to include contouring, thus releasing the clinician from attending daily treatment. Following undergoing a specifically designed training programme, an online interobserver variability study was performed. MATERIALS AND METHODS: 117 images from six patients treated on a MR Linac were contoured online by either radiographer or clinician and the same images contoured offline by the alternate profession. Dice similarity coefficient (DSC), mean distance to agreement (MDA), Hausdorff distance (HD) and volume metrics were used to analyse contours. Additionally, the online radiographer contours and optimised plans (n = 59) were analysed using the offline clinician defined contours. After clinical implementation of radiographer contouring, target volume comparison and dose analysis was performed on 20 contours from five patients. RESULTS: Comparison of the radiographers' and clinicians' contours resulted in a median (range) DSC of 0.92 (0.86 - 0.99), median (range) MDA of 0.98 mm (0.2-1.7) and median (range) HD of 6.3 mm (2.5-11.5) for all 117 fractions. There was no significant difference in volume size between the two groups. Of the 59 plans created with radiographer online contours and overlaid with clinicians' offline contours, 39 met mandatory dose constraints and 12 were acceptable because 95 % of the high dose PTV was covered by 95 % dose, or the high dose PTV was within 3 % of online plan. A clinician blindly reviewed the eight remaining fractions and, using trial quality assurance metrics, deemed all to be acceptable. Following clinical implementation of radiographer contouring, the median (range) DSC of CTV was 0.93 (0.88-1.0), median (range) MDA was 0.8 mm (0.04-1.18) and HD was 5.15 mm (2.09-8.54) respectively. Of the 20 plans created using radiographer online contours overlaid with clinicians' offline contours, 18 met the dosimetric success criteria, the remaining 2 were deemed acceptable by a clinician. CONCLUSION: Radiographer and clinician prostate and seminal vesicle contours on MRI for an online adaptive workflow are comparable and produce clinically acceptable plans. Radiographer contouring for prostate treatment on a MR-linac can be effectively introduced with appropriate training and evaluation. A DSC threshold for target structures could be implemented to streamline future training.


Subject(s)
Prostatic Neoplasms , Radiotherapy, Image-Guided , Male , Humans , Prostate , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/radiotherapy , Seminal Vesicles , Pelvis , Radiotherapy, Image-Guided/methods , Magnetic Resonance Imaging/methods , Radiotherapy Planning, Computer-Assisted/methods
2.
Article in English | MEDLINE | ID: mdl-36654720

ABSTRACT

The implementation of MRI-guided online adaptive radiotherapy has enabled extension of therapeutic radiographers' roles to include contouring. An offline interobserver variability study compared five radiographers' and five clinicians' contours on 10 MRIs acquired on a MR-Linac from 10 patients. All contours were compared to a "gold standard" created from an average of clinicians' contours. The median (range) DSC of radiographers' and clinicians' contours compared to the "gold standard" was 0.91 (0.86-0.96), and 0.93 (0.88-0.97) respectively illustrating non-inferiority of the radiographers' contours to the clinicians. There was no significant difference in HD, MDA or volume size between the groups.

3.
J Food Prot ; 85(1): 164-172, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34591092

ABSTRACT

ABSTRACT: Perfluorooctanoic acid (PFOA) is used as a surfactant in consumer and industrial products and is frequently found in biosolids from wastewater treatment plants. When present in biosolids applied to croplands, PFOA can contaminate feed and fodder used by livestock, but the extent of PFOA transfer from soil to plants is not well characterized. A single dose of radiocarbon (14C)-tagged PFOA was applied to unplanted soil or soil containing growing alfalfa. PFOA transport through unplanted soil and uptake by alfalfa was monitored over a 10-week study period. Radiocarbon was initially measured in roots, stems, and leaves 7 days after [14C]-PFOA application to soil. PFOA accumulation was greatest in leaves during the 10-week sampling. By week 10, PFOA migration through unplanted soil had reached a depth of 22.8 ± 2.5 cm. In contrast, PFOA migrated to 7.5 ± 2.5 cm in soil containing alfalfa plants. The greatest predictor of PFOA concentration in alfalfa leaves was PFOA concentration in the top 5 cm of soil; PFOA concentrations at lower depths were not correlated with alfalfa PFOA concentrations. PFOA transport through soil may be slowed by the presence of forage; however, PFOA accumulation in edible portions of forage plants may increase food animal exposure to PFOA residues.


Subject(s)
Fluorocarbons , Soil Pollutants , Animals , Caprylates , Fluorocarbons/analysis , Medicago sativa , Soil , Soil Pollutants/analysis
4.
Phys Med Biol ; 66(22)2021 11 11.
Article in English | MEDLINE | ID: mdl-34666318

ABSTRACT

Radiation induced bystander effects (RIBEs) have been shown to cause death in cells receiving little or no physical dose. In standard radiotherapy, where uniform fields are delivered and all cells are directly exposed to radiation, this phenomenon can be neglected. However, the role of RIBEs may become more influential when heterogeneous fields are considered. Mathematical modelling can be used to determine how these heterogeneous fields might influence cell survival, but most established techniques account only for the direct effects of radiation. To gain a full appreciation of how non-uniform fields impact cell survival, it is also necessary to consider the indirect effects of radiation. In this work, we utilise a mathematical model that accounts for both the direct effects of radiation on cells and RIBEs. This model is used to investigate how spatially fractionated radiotherapy plans impact cell survivalin vitro. These predictions were compared to survival in normal and cancerous cells following exposure to spatially fractionated plans using a clinical linac. The model is also used to explore how spatially fractionated radiotherapy will impact tumour controlin vivo. Results suggest that spatially fractionated plans are associated with higher equivalent uniform doses than conventional uniform plans at clinically relevant doses. The model predicted only small changes changes in normal tissue complication probability, compared to the larger protection seen clinically. This contradicts a central paradigm of radiotherapy where uniform fields are assumed to maximise cell kill and may be important for future radiotherapy optimisation.


Subject(s)
Neoplasms , Radiation Injuries , Bystander Effect/radiation effects , Dose Fractionation, Radiation , Humans , Models, Biological , Neoplasms/radiotherapy
6.
Environ Pollut ; 256: 113384, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31677876

ABSTRACT

Although livestock manure, such as from swine (Sus scrofa domestica), have high capacity to introduce endocrine-disrupting free estrogens into the environment, the frequency of estrogen detections from reconnaissance studies suggest that these compounds are ubiquitous in the environment, perhaps resulting from historic manure inputs (e.g. cattle grazing residues, undocumented historic manure applications) or uncontrolled natural sources. Compared to free estrogens, conjugates of estrogens are innocuous but have greater mobility in the environment. Estrogen conjugates can also hydrolyze to re-form the potent free estrogens. The objective of this study was to identify the transport of free and conjugated estrogens to subsurface tile drains and groundwater beneath fields treated with swine manure slurry. Three field treatments were established, two receiving swine lagoon manure slurry and one with none. Manure slurry was injected into soils at a shallow depth (∼8 cm) and water samples from tile drains and shallow wells were sampled periodically for three years. Glucuronide and sulfate conjugates of 17ß-estradiol (E2) and estrone (E1) were the only estrogen compounds detected in the tile drains (total detects = 31; 5% detection frequency; conc. range = 3.9-23.1 ng L-1), indicating the important role conjugates played in the mobility of estrogens. Free estrogens and estrogen conjugates were more frequently detected in the wells compared to the tile drains (total detects = 70; 11% detection frequency; conc. range = 4.0-1.6 × 103 ng L-1). No correlations were found between estrogen compound detections and dissolved or colloidal organic carbon (OC) fractions or other water quality parameters. Estrogenic compounds were detected beneath both manure treated and non-treated plots; furthermore, the total potential estrogenic equivalents (i.e. estrogenicity of hydrolyzed conjugates + free estrogens) were similar between treated and non-treated plots.


Subject(s)
Endocrine Disruptors/analysis , Estrogens, Conjugated (USP)/analysis , Estrogens/analysis , Groundwater/chemistry , Manure/analysis , Wastewater/chemistry , Animals , Biological Assay , Cattle , Estradiol/analysis , Estrone/analysis , Livestock , Soil/chemistry , Swine
7.
J Environ Manage ; 206: 826-835, 2018 Jan 15.
Article in English | MEDLINE | ID: mdl-29197808

ABSTRACT

Contaminated soils pose a risk to human and ecological health, and thermal remediation is an efficient and reliable way to reduce soil contaminant concentration in a range of situations. A primary benefit of thermal treatment is the speed at which remediation can occur, allowing the return of treated soils to a desired land use as quickly as possible. However, this treatment also alters many soil properties that affect the capacity of the soil to function. While extensive research addresses contaminant reduction, the range and magnitude of effects to soil properties have not been explored. Understanding the effects of thermal remediation on soil properties is vital to successful reclamation, as drastic effects may preclude certain post-treatment land uses. This review highlights thermal remediation studies that have quantified alterations to soil properties, and it supplements that information with laboratory heating studies to further elucidate the effects of thermal treatment of soil. Notably, both heating temperature and heating time affect i) soil organic matter; ii) soil texture and mineralogy; iii) soil pH; iv) plant available nutrients and heavy metals; v) soil biological communities; and iv) the ability of the soil to sustain vegetation. Broadly, increasing either temperature or time results in greater contaminant reduction efficiency, but it also causes more severe impacts to soil characteristics. Thus, project managers must balance the need for contaminant reduction with the deterioration of soil function for each specific remediation project.


Subject(s)
Metals, Heavy , Soil Pollutants , Environmental Restoration and Remediation , Humans , Hydrogen-Ion Concentration , Soil
8.
J Environ Qual ; 46(4): 897-905, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28783790

ABSTRACT

Successful remediation of oil-contaminated agricultural land may include the goal of returning the land to prespill levels of agricultural productivity. This productivity may be measured by crop yield, quality, and safety, all of which are influenced by soil characteristics. This research was conducted to determine if these metrics are affected in hard red spring wheat ( L. cultivar Barlow) when grown in soils treated by ex situ thermal desorption (TD) compared with wheat grown in native topsoil (TS). Additionally, TD soils were mixed with TS at various ratios to assess the effectiveness of soil mixing as a procedure for enhancing productivity. In two greenhouse studies, TD soils alone produced similar amounts of grain and biomass as TS, although grain protein in TD soils was 22% (±7%) lower. After mixing TS into TD soils, the mean biomass and grain yield were reduced by up to 60%, but grain protein increased. These trends are likely the result of nutrient availability determined by soil organic matter and nutrient cycling performed by soil microorganisms. Thermal desorption soil had 84% (±2%) lower soil organic carbon than TS, and cumulative respiration was greatly reduced (66 ± 2%). From a food safety perspective, grain from TD soils did not show increased uptake of polycyclic aromatic hydrocarbons. Overall, this research suggests that TD soils are capable of producing safe, high-quality grain yields.


Subject(s)
Agriculture , Triticum/growth & development , Carbon , Soil , Soil Pollutants/chemistry
9.
J Environ Qual ; 46(4): 802-810, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28783794

ABSTRACT

17ß-Estradiol (E2), a natural, endocrine-disrupting, steroid hormone, is excreted by all vertebrates and can enter the environment from domestic animal and wildlife wastes. Multiple field studies using livestock manures as E2 sources suggest significant background concentrations of E2 (e.g., wildlife sources, hydrolysis of E2 conjugates, previous inputs). To accurately understand field fate and transport processes of E2, it is necessary to address the issue of background detections. In this study, two fluorinated and three brominated surrogate compounds of E2 were synthesized and compared to native E2 using soil/water batch experiments and for estrogenic activity. Analytical difficulties presented by the two fluorinated congeners deemed these compounds to be unsuitable surrogates of E2, and further assessment was abandoned. However, the brominated congeners proved promising, with log( ) values that fell within the range previously reported for E2. Batch studies yielded similar relative aqueous concentrations and linear sorption isotherms across time for E2 and 2-bromo-17ß-estradiol; however, the relative aqueous concentrations and linear sorption isotherms of 4-bromo-17ß-estradiol and 2,4-dibromo-17ß-estradiol were different from E2 but similar to one another. All three brominated congeners possessed estrogenic activity by E-Screen assay, albeit three orders of magnitude less than native E2, putatively due to steric interference introduced by the large bromine atom on the phenolic ring, the group that mediates interaction with the estrogen receptor. The data suggest that 2-bromo-17ß-estradiol may serve as a suitable surrogate for E2 in planned field scale tracer studies designed to distinguish between antecedent and de novo inputs.


Subject(s)
Estradiol/chemistry , Manure , Soil Pollutants/chemistry , Animals , Environmental Monitoring , Estradiol/analysis , Soil , Soil Pollutants/analysis , Water
10.
J Pediatr Pharmacol Ther ; 21(4): 346-352, 2016.
Article in English | MEDLINE | ID: mdl-27713675

ABSTRACT

OBJECTIVES: This pilot study investigated the feasibility and effect on health care utilization of medically complex children participating in a pharmacist-led model for care coordination. Quality of life and satisfaction with care were secondarily assessed for each patient. METHODS: Four medically complex children were enrolled and contacted by the pharmacist weekly for 5 consecutive months. Time for each encounter with a patient was collected. Each patient's hospital admissions, days of stay, emergency department visits, and clinic visits were recorded. At enrollment and at the end of the study, each caregiver completed the PedsQL 4.0 questionnaire to evaluate the child's quality of life and the Patient Assessment of Care for Chronic Conditions questionnaire to assess satisfaction with care. Patients aged 5 years and older completed an age-appropriate version of the PedsQL 4.0 as well. RESULTS: The pharmacist spent on average 60 to 80 minutes per patient per week. Hospital admissions and days of stay decreased for 3 patients and increased for 1 patient during this study. Quality of life increased for 2 patients and decreased for 2 patients and satisfaction with care increased for all 4 caregivers. CONCLUSIONS: This model was feasible for a pharmacist to coordinate and required frequent physician involvement. Health care utilization varied between patients, but overall decreased for the 4 patients pooled. Changes in quality of life varied and may be attributed to using a survey that was not specific to medically complex children. Overall, caregivers were highly satisfied with this service and the health care their child received.

11.
J Environ Sci (China) ; 45: 40-8, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27372117

ABSTRACT

The feed additive ractopamine hydrochloride was fortified at four concentrations into batch vials containing soils that differed in both biological activity and organic matter (OM). Sampling of the liquid layer for 14days demonstrated that ractopamine rapidly dissipated from the liquid layer. Less than 20% of the fortified dose remained in the liquid layer after 4hr, and recoveries of dosed ractopamine ranged from 8 to 18% in the liquid layer at 336hr. Sorption to soil was the major fate for ractopamine in soil:water systems, i.e., 42%-51% of the dose at 14days. The major portion of the sorbed fraction was comprised of non-extractables; a smaller fraction of the sorbed dose was extracted into water and acetone, portions which would be potentially mobile in the environment. Partitioning coefficients for all soils suggested strong sorption of ractopamine to soil which is governed by hydrophobic interactions and cation exchange complexes within the soil OM. Ractopamine degradation was observed, but to mostly non-polar compounds which had a higher potential than ractopamine to sorb to soil. The formation of volatiles was also suggested. Therefore, despite rapid and extensive soil sorption, these studies indicated a portion of ractopamine, present in manures used to fertilize soils, may be mobile in the environment via water-borne events.


Subject(s)
Adrenergic Agonists/analysis , Models, Chemical , Phenethylamines/analysis , Soil Pollutants/analysis , Environmental Monitoring , Hydrophobic and Hydrophilic Interactions , Soil/chemistry , Water/chemistry
12.
J Environ Qual ; 45(4): 1430-6, 2016 Jul.
Article in English | MEDLINE | ID: mdl-27380094

ABSTRACT

Given the recent increase in crude oil production in regions with predominantly agricultural economies, the determination of methods that remediate oil contamination and allow for the land to return to crop production is increasingly relevant. Ex situ thermal desorption (TD) is a technique used to remediate crude oil pollution that allows for reuse of treated soil, but the properties of that treated soil are unknown. The objectives of this research were to characterize TD-treated soil and to describe implications in using TD to remediate agricultural soil. Native, noncontaminated topsoil and subsoil adjacent to an active remediation site were separately subjected to TD treatment at 350°C. Soil physical characteristics and hydraulic processes associated with agricultural productivity were assessed in the TD-treated samples and compared with untreated samples. Soil organic carbon decreased more than 25% in both the TD-treated topsoil and the subsoil, and total aggregation decreased by 20% in the topsoil but was unaffected in the subsoil. The alteration in these physical characteristics explains a 400% increase in saturated hydraulic conductivity in treated samples as well as a decrease in water retention at both field capacity and permanent wilting point. The changes in soil properties identified in this study suggest that TD-treated soils may still be suitable for sustaining vegetation, although likely at a slightly diminished capacity when directly compared with untreated soils.


Subject(s)
Agriculture , Soil Pollutants/chemistry , Soil , Temperature
13.
Chemosphere ; 119: 1322-1328, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24630461

ABSTRACT

To identify abiotic processes that govern the fate of a sulfate conjugated estrogen, 17ß-estradiol-17-sulfate (E2-17S), soil batch experiments were conducted to investigate the dissipation, sorption, and degradation of radiolabeled E2-17S under sterilized conditions. The aqueous dissipation half-lives (DT50) for E2-17S ranged from 2.5 to 9.3h for the topsoil of high organic carbon (OC) content (1.29%), but E2-17S remained at ∼80% of applied dose in the low OC (0.26%) subsoil by 14 d. The non-linear sorption isotherms indicated limited sorption of E2-17S, and the concentration-dependent log KOC values were 2.20 and 2.45 for the topsoil and subsoil, respectively. Additionally, two types of hydroxyl E2-17S (OH-E2-17S and diOH-E2-17S) were found as major metabolites in the aqueous phase, which represented 9-25% and 6-7% of applied dose for the topsoil and subsoil at 14 d, respectively. Free estrogens, 17ß-estradiol (E2) and estrone (E1), were detected from the sorbed phase of the soil-water systems.


Subject(s)
Estradiol/analogs & derivatives , Soil Pollutants/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Estradiol/analysis , Estradiol/chemistry , Estrogens/analysis , Estrogens/chemistry , Estrone/analysis , Estrone/chemistry , Soil/chemistry , Soil Pollutants/analysis , Sterilization , Water/chemistry , Water Pollutants, Chemical/analysis
14.
J Contam Hydrol ; 168: 17-24, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25247675

ABSTRACT

Animal manure is the primary source of exogenous free estrogens in the environment, which are known endocrine-disrupting chemicals to disorder the reproduction system of organisms. Conjugated estrogens can act as precursors to free estrogens, which may increase the total estrogenicity in the environment. In this study, a comprehensive model was used to simultaneously simulate the coupled sorption and transformation of a sulfate estrogen conjugate, 17ß-estradiol-17-sulfate (E2-17S), in various soil-water systems (non-sterile/sterile; topsoil/subsoil). The simulated processes included multiple transformation pathways (i.e. hydroxylation, hydrolysis, and oxidation) and mass transfer between the aqueous, reversibly sorbed, and irreversibly sorbed phases of all soils for E2-17S and its metabolites. The conceptual model was conceived based on a series of linear sorption and first-order transformation expressions. The model was inversely solved using finite difference to estimate process parameters. A global optimization method was applied for the inverse analysis along with variable model restrictions to estimate 36 parameters. The model provided a satisfactory simultaneous fit (R(2)adj=0.93 and d=0.87) of all the experimental data and reliable parameter estimates. This modeling study improved the understanding on fate and transport of estrogen conjugates under various soil-water conditions.


Subject(s)
Environmental Monitoring/methods , Estradiol/analogs & derivatives , Models, Theoretical , Soil Pollutants/metabolism , Water Pollutants, Chemical/metabolism , Adsorption , Estradiol/metabolism , Manure/analysis
15.
Sci Total Environ ; 494-495: 58-64, 2014 Oct 01.
Article in English | MEDLINE | ID: mdl-25029505

ABSTRACT

The dissolved (DF) and colloidal fractions (CF) of soil and manure play an important role in the environmental fate and transport of steroidal estrogens. The first objective of this study was to quantify the association of 17ß-estradiol (E2) with the DF and CF isolated from (i) liquid swine manure (LSM), (ii) a soil:water mixture (soil), and (iii) a LSM:soil:water mixture (Soil+LSM). The appropriate CF and DF size fractions of the Soil, Soil+LSM, and LSM media were obtained by first filtering through a 0.45 µm filter, which provided the combined DF and CF (DF/CF). The DF/CF from the three media was spiked with carbon-14 ([(14)C]) radiolabeled E2 ([(14)C]-E2), and then ultrafiltered to isolate the CF (<0.45 µm and >1 kDa) from the DF (<1 kDa). The average recoveries of the [(14)C] associated with the DF were 67%-72%, 67%-79%, and 76%-78% for the Soil, Soil+LSM and LSM, respectively. For the CF that was retained on the 1 kDa filter, organic carbon and [(14)C]-E2 were dislodged with subsequent water rinses the Soil+LSM and LSM, but not the Soil. The second objective was to evaluate whether the E2 associated with the various fractions of the different media could still bind the estrogen receptor using an E2 receptor (17ß-ER) competitor assay, which allowed E2 equivalent concentrations to be determined. The estrogen receptor assay results indicated that E2 present in the DF of the Soil and Soil+LSM solutions could still bind the estrogen receptor. Results from this study indicated that E2 preferentially associated with the DF of soil and manure, which may enhance its dissolved advective transport in surface and subsurface water. Furthermore, this study indicated that E2 associated with DF solutions in the environment could potentially induce endocrine responses through its interactions with estrogen receptor.


Subject(s)
Estradiol/chemistry , Manure , Models, Chemical , Soil Pollutants/chemistry , Soil/chemistry , Environmental Monitoring
16.
J Environ Qual ; 43(2): 701-8, 2014 Mar.
Article in English | MEDLINE | ID: mdl-25602671

ABSTRACT

The fate of [C]17ß-estradiol ([C]E2) was monitored for 42 d in triplicate 10-L anaerobic digesters. Total radioactive residues decreased rapidly in the liquid layer of the digesters and reached a steady-state value of 22 to 26% of the initial dose after 5 d. High-performance liquid chromatography and liquid chromatography-tandem mass spectrometry analyses of the liquid layer of the anaerobic digesters indicated a rapid degradation of E2 to estrone (E1), which readily adsorbed to the sludge layer subsequent to its formation. Estrone was the predominant steroid identified under anaerobic digestion in the liquid layer or sorbed to sludge at 42 d. Methane formation represented 11.1 ± 5.7% of the initial E2 fortification with 0.3 to 0.5% of the starting E2 mineralized to carbon dioxide. Maximum [C]methane production appeared between Days 4 and 7. An estimate of estrogenicity of the final product based on reported estrogen equivalents for E1 and E2 was 2% of the original in active digesters. Anaerobic digestion of swine waste has several management benefits; moreover, this study demonstrated that it reduces the potential of environmental release of estrogens, which are known endocrine disruptors.

17.
J Hazard Mater ; 260: 733-9, 2013 Sep 15.
Article in English | MEDLINE | ID: mdl-23846123

ABSTRACT

In the environment, estrogen conjugates can be precursors to the endocrine-disrupting free estrogens, 17ß-estradiol (E2) and estrone (E1). Compared to other estrogen conjugates, 17ß-estradiol-17-sulfate (E2-17S) is detected at relatively high concentrations and frequencies in animal manure and surface runoff from fields receiving manure. To elucidate the lifecycle of manure-borne estrogens and their conjugates in the environment, the fate of radiolabelled E2-17S in agricultural soils was investigated using laboratory batch studies with soils of different organic carbon (OC) content (1.29% for topsoil versus 0.26% for subsoil). E2-17S was found relatively persistent in the aqueous phase throughout the duration of the 14 d experiment. The aqueous E2-17S persisted longer in the subsoil (half-lives (DT50)=64-173 h) than the topsoil (DT50=4.9-26 h), and the aqueous persistence of E2-17S depended on its initial concentration. The major transformation pathway was hydroxylation, yielding mono- and di-hydroxy-E2-17S (OH-E2-17S and diOH-E2-17S). Free estrogens, E2 and E1, were only observed in the sorbed phase of the soil at low concentrations (∼1% of applied dose), which demonstrated that deconjugation and subsequent oxidation had occurred. Although deconjugation was not a major pathway, E2-17S could be a precursor of free estrogens in the environment.


Subject(s)
Estradiol/analogs & derivatives , Soil Pollutants/isolation & purification , Water Pollutants/isolation & purification , Agriculture/methods , Animals , Carbon/chemistry , Environmental Monitoring/methods , Estradiol/chemistry , Estrogens/chemistry , Hydrolysis , Hydroxylation , Kinetics , Manure , Mass Spectrometry , Oxygen/chemistry , Soil Pollutants/analysis , Solvents/chemistry , Swine , Time Factors , Water Pollutants/analysis
18.
Environ Eng Sci ; 30(2): 89-96, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23443733

ABSTRACT

Estrogens, a potent group of endocrine disruptors toward aquatic species, are primarily excreted as conjugates from humans and animals. Radioassay-based approaches with detailed speciation have been frequently conducted for environmental-fate studies for pesticides; however, such techniques have not been exploited for reproductive hormones, and especially for hormone conjugates. This article describes a simple, robust, and high-mass-recovery approach to investigate the fate and transformation of a prototype estrogen conjugate, that is, 17ß-estradiol-3-glucuronide (E2-3G), and its metabolites (free estrogens) in a laboratory soil and water matrix without the need for enzymatic cleavage and/or fluorescent derivatization. E2-3G and its metabolites were baseline resolved in a single run using high-performance liquid chromatography (HPLC) and quantified by liquid scintillation counting of the HPLC effluents. Transformation of E2-3G and the disposition of its metabolites--the free estrogens 17ß-estradiol and estrone--into aqueous, sorbed, and gaseous phases, were adequately accounted for in a soil-water batch system. High mass balances ranging from 99.0% to 114.1% were obtained. Although the method gave lower sensitivity (parts per billion) than tandem mass spectrometer (parts per trillion), it offered sufficient chromatographic resolution and sensitivity to study the fate of labile estrogens in environmental matrices, using the concentration range of this study. An additional advantage of the approach was the relatively low cost of the instrumentation employed. The presented approach can be successfully applied to study the fate of conjugated hormones and their metabolites in the environment allowing simultaneous discernment of complex fate and transformation processes in soil, water, and gas.

19.
Pediatr Crit Care Med ; 14(3): e143-8, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23392367

ABSTRACT

BACKGROUND: Ischemia depletes antioxidant reserves and impairs mitochondrial electron transport. Oxygen within blood reperfusing ischemic tissue can form free radicals, worsen oxidative stress, and exacerbate tissue injury (reperfusion injury). One strategy for limiting reperfusion injury is to limit delivery of "luxuriant" oxygen during or after reperfusion. Resuscitation guidelines for children with cardiac arrest recommend early weaning of supplemental oxygen as tolerated. There are currently no studies demonstrating the frequency and outcomes of hyperoxia and hypoxia after pediatric cardiac arrest. OBJECTIVE: To determine the frequency and outcomes of hyperoxia and hypoxia in patients following resuscitation from pediatric cardiac arrest admitted to a tertiary care center. DESIGN AND METHODS: This is a retrospective observational cohort study. Charts of children resuscitated from cardiac arrest and admitted to our hospital from 2004 to 2008 were reviewed. Partial pressures of oxygen (PaO2) obtained within the first 24 hours following return of spontaneous circulation and mortality at 6 months was recorded. Children who did not survive the initial 48 hours, patients having undergone extracorporeal oxygenation or had congenital heart disease, and those in whom arterial blood gases were not obtained were excluded. RESULTS: Seventy-four patients met inclusion criteria. Of these, 38 (51%) had at least one arterial blood gases with a PaO2 > 300 mm Hg and 10 (14%) had a PaO2 < 60 mm Hg in the first 24 hours. Neither hyperoxia nor hypoxia on initial arterial blood gases (p = 0.912 and p = 0.384) nor any arterial blood gases within the first 24 hours after cardiac arrest (p = 0.325 and p = 0.553) was associated with 6-month mortality. CONCLUSIONS: Hyperoxia occurs commonly within the first 24 hours of management in children resuscitated from cardiac arrest.


Subject(s)
Heart Arrest/therapy , Hyperoxia/etiology , Hypoxia/etiology , Oxygen Inhalation Therapy/adverse effects , Resuscitation , Adolescent , Biomarkers/blood , Child , Child, Preschool , Female , Follow-Up Studies , Heart Arrest/mortality , Humans , Hyperoxia/blood , Hyperoxia/diagnosis , Hyperoxia/epidemiology , Hypoxia/blood , Hypoxia/diagnosis , Hypoxia/epidemiology , Infant , Infant, Newborn , Logistic Models , Male , Oxygen/blood , Retrospective Studies , Treatment Outcome
20.
Ground Water ; 51(3): 373-84, 2013.
Article in English | MEDLINE | ID: mdl-22913586

ABSTRACT

It is important to understand the link between land surface/soil properties and shallow groundwater quality. To that end, soil properties and near-water-table groundwater chemistry of a shallow, unconfined aquifer were measured on a 100-m grid on a 64-ha irrigated field in southeastern North Dakota. Soil properties and hydrochemistry were compared via multivariate analysis that included product-moment correlations and factor analysis/principal component analysis. Topographic low areas where the water table was in close proximity to the soil surface generally had higher apparent electrical conductivity (ECa ) and higher percent silt and clay than higher positions on the landscape. The majority of the groundwater was characterized by Ca- and Mg-HCO3 type water and was associated with topographic high areas with lower ECa and net groundwater recharge. Small topographic depressions were areas of higher ECa (net groundwater discharge) where salts that precipitated via evapotranspiration and evaporative discharge dissolved and leached to the groundwater during short-term depression-focused recharge events. At this site, groundwater quality and soil ECa were related to surface topography. High-resolution topography and EC(a) measurements are necessary to characterize the land surface/soil properties and surficial groundwater quality at the field-scale and to delineate areas where the shallow groundwater is most susceptible to contamination.


Subject(s)
Groundwater/chemistry , Soil , Water Quality , Agricultural Irrigation , Aluminum Silicates , Calcium/analysis , Clay , Electric Conductivity , Groundwater/analysis , Hydrogen-Ion Concentration , Magnesium/analysis , Multivariate Analysis , North Dakota , Principal Component Analysis , Water Supply
SELECTION OF CITATIONS
SEARCH DETAIL
...