Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Transl Med ; 16(730): eadf9735, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38232138

ABSTRACT

Genetic variation at the transmembrane protein 106B gene (TMEM106B) has been linked to risk of frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-TDP) through an unknown mechanism. We found that presence of the TMEM106B rs3173615 protective genotype was associated with longer survival after symptom onset in a postmortem FTLD-TDP cohort, suggesting a slower disease course. The seminal discovery that filaments derived from TMEM106B is a common feature in aging and, across a range of neurodegenerative disorders, suggests that genetic variants in TMEM106B could modulate disease risk and progression through modulating TMEM106B aggregation. To explore this possibility and assess the pathological relevance of TMEM106B accumulation, we generated a new antibody targeting the TMEM106B filament core sequence. Analysis of postmortem samples revealed that the TMEM106B rs3173615 risk allele was associated with higher TMEM106B core accumulation in patients with FTLD-TDP. In contrast, minimal TMEM106B core deposition was detected in carriers of the protective allele. Although the abundance of monomeric full-length TMEM106B was unchanged, carriers of the protective genotype exhibited an increase in dimeric full-length TMEM106B. Increased TMEM106B core deposition was also associated with enhanced TDP-43 dysfunction, and interactome data suggested a role for TMEM106B core filaments in impaired RNA transport, local translation, and endolysosomal function in FTLD-TDP. Overall, these findings suggest that prevention of TMEM106B core accumulation is central to the mechanism by which the TMEM106B protective haplotype reduces disease risk and slows progression.


Subject(s)
Frontotemporal Dementia , Humans , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Frontotemporal Dementia/genetics , Frontotemporal Dementia/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Polymorphism, Single Nucleotide/genetics
2.
J Neuropathol Exp Neurol ; 83(1): 36-52, 2023 12 22.
Article in English | MEDLINE | ID: mdl-38086178

ABSTRACT

Transactive response DNA-binding protein 43 (TDP-43) pathology is categorized as type A-E in frontotemporal lobar degeneration and as type α-ß in Alzheimer disease (AD) based on inclusion type. We screened amygdala slides of 131 cases with varying ages at death, clinical/neuroimaging findings, and AD neuropathologic changes for TDP-43 pathology using anti-phospho-TDP-43 antibodies. Seven cases (5%) only showed atypical TDP-43 inclusions that could not be typed. Immunohistochemistry and immunofluorescence assessed the atypical star-shaped TDP-43 pathology including its distribution, species, cellular localization, and colocalization with tau. All 7 had died at an extremely old age (median: 100 years [IQR: 94-101]) from nonneurological causes and none had dementia (4 cognitively unimpaired, 3 with amnestic mild cognitive impairment). Neuroimaging showed mild medial temporal involvement. Pathologically, the star-shaped TDP-43-positive inclusions were found in medial (subpial) amygdala and, occasionally, in basolateral regions. Hippocampus only showed TDP-43-positive neurites in the fimbria and subiculum while the frontal lobe was free of TDP-43 inclusions. The star-shaped inclusions were better detected with antibodies against N-terminal than C-terminal TDP-43. Double-labeling studies confirmed deposition of TDP-43 within astrocytes and colocalization with tau. We have identified a novel TDP-43 pathology with star-shaped morphology associated with superaging, with a homogeneous clinicopathologic picture, possibly representing a novel, true aging-related TDP-43 pathology.


Subject(s)
Alzheimer Disease , Frontotemporal Dementia , Frontotemporal Lobar Degeneration , TDP-43 Proteinopathies , Humans , Aged, 80 and over , Brain/pathology , DNA-Binding Proteins/metabolism , Frontotemporal Lobar Degeneration/pathology , Frontotemporal Dementia/pathology , Transcription Factors/metabolism , Alzheimer Disease/pathology , TDP-43 Proteinopathies/pathology
3.
J Neurosci ; 30(32): 10851-9, 2010 Aug 11.
Article in English | MEDLINE | ID: mdl-20702714

ABSTRACT

Transactivation response DNA-binding protein 43 (TDP-43) is a principal component of ubiquitinated inclusions in frontotemporal lobar degeneration with ubiquitin-positive inclusions and in amyotrophic lateral sclerosis (ALS). Mutations in TARDBP, the gene encoding TDP-43, are associated with sporadic and familial ALS, yet multiple neurodegenerative diseases exhibit TDP-43 pathology without known TARDBP mutations. While TDP-43 has been ascribed a number of roles in normal biology, including mRNA splicing and transcription regulation, elucidating disease mechanisms associated with this protein is hindered by the lack of models to dissect such functions. We have generated transgenic (TDP-43PrP) mice expressing full-length human TDP-43 (hTDP-43) driven by the mouse prion promoter to provide a tool to analyze the role of wild-type hTDP-43 in the brain and spinal cord. Expression of hTDP-43 caused a dose-dependent downregulation of mouse TDP-43 RNA and protein. Moderate overexpression of hTDP-43 resulted in TDP-43 truncation, increased cytoplasmic and nuclear ubiquitin levels, and intranuclear and cytoplasmic aggregates that were immunopositive for phosphorylated TDP-43. Of note, abnormal juxtanuclear aggregates of mitochondria were observed, accompanied by enhanced levels of Fis1 and phosphorylated DLP1, key components of the mitochondrial fission machinery. Conversely, a marked reduction in mitofusin 1 expression, which plays an essential role in mitochondrial fusion, was observed in TDP-43PrP mice. Finally, TDP-43PrP mice showed reactive gliosis, axonal and myelin degeneration, gait abnormalities, and early lethality. This TDP-43 transgenic line provides a valuable tool for identifying potential roles of wild-type TDP-43 within the CNS and for studying TDP-43-associated neurotoxicity.


Subject(s)
DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Mitochondria/metabolism , Movement Disorders , Analysis of Variance , Animals , Body Weight/genetics , Brain/metabolism , Brain/pathology , Brain/ultrastructure , Dynamins , GTP Phosphohydrolases/metabolism , Gene Expression Regulation/genetics , Humans , Mice , Mice, Transgenic , Microscopy, Electron, Transmission/methods , Microtubule-Associated Proteins/metabolism , Mitochondria/genetics , Mitochondria/pathology , Mitochondrial Proteins/metabolism , Motor Neurons/metabolism , Motor Neurons/pathology , Motor Neurons/ultrastructure , Movement Disorders/genetics , Movement Disorders/metabolism , Movement Disorders/mortality , Mutation/genetics , Nerve Degeneration/genetics , Nerve Degeneration/mortality , Nerve Degeneration/pathology , Phosphorylation/genetics , Prions/genetics , Prions/metabolism , Silver Staining/methods , Spinal Cord/metabolism , Spinal Cord/pathology , Spinal Cord/ultrastructure
SELECTION OF CITATIONS
SEARCH DETAIL
...