Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38558995

ABSTRACT

The histone methyltransferase Polycomb repressive complex 2 (PRC2) is required for specification of the neural crest, and mis-regulation of the neural crest can cause severe congenital malformations. PRC2 is required for induction of the neural crest, but the embryonic, cellular, and molecular consequences of PRC2 activity after neural crest induction are incompletely understood. Here we show that Eed, a core subunit of PRC2, is required for craniofacial osteoblast differentiation and mesenchymal proliferation after induction of the neural crest. Integrating mouse genetics with single-cell RNA sequencing, our results reveal that conditional knockout of Eed after neural crest cell induction causes severe craniofacial hypoplasia, impaired craniofacial osteogenesis, and attenuated craniofacial mesenchymal cell proliferation that is first evident in post-migratory neural crest cell populations. We show that Eed drives mesenchymal differentiation and proliferation in vivo and in primary craniofacial cell cultures by regulating diverse transcription factor programs that are required for specification of post-migratory neural crest cells. These data enhance understanding of epigenetic mechanisms that underlie craniofacial development, and shed light on the embryonic, cellular, and molecular drivers of rare congenital syndromes in humans.

2.
Nat Commun ; 15(1): 477, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38216572

ABSTRACT

Schwann cell tumors are the most common cancers of the peripheral nervous system and can arise in patients with neurofibromatosis type-1 (NF-1) or neurofibromatosis type-2 (NF-2). Functional interactions between NF1 and NF2 and broader mechanisms underlying malignant transformation of the Schwann lineage are unclear. Here we integrate bulk and single-cell genomics, biochemistry, and pharmacology across human samples, cell lines, and mouse allografts to identify cellular de-differentiation mechanisms driving malignant transformation and treatment resistance. We find DNA methylation groups of Schwann cell tumors can be distinguished by differentiation programs that correlate with response to the MEK inhibitor selumetinib. Functional genomic screening in NF1-mutant tumor cells reveals NF2 loss and PAK activation underlie selumetinib resistance, and we find that concurrent MEK and PAK inhibition is effective in vivo. These data support a de-differentiation paradigm underlying malignant transformation and treatment resistance of Schwann cell tumors and elucidate a functional link between NF1 and NF2.


Subject(s)
Neurilemmoma , Neurofibromatoses , Neurofibromatosis 1 , Neurofibromatosis 2 , Animals , Humans , Mice , Mitogen-Activated Protein Kinase Kinases/metabolism , Neurilemmoma/genetics , Neurilemmoma/pathology , Neurofibromatoses/metabolism , Neurofibromatoses/pathology , Neurofibromatosis 1/genetics , Neurofibromatosis 1/metabolism , Neurofibromatosis 2/genetics , Neurofibromatosis 2/pathology , Schwann Cells/metabolism , Drug Resistance, Neoplasm/genetics
3.
Nat Commun ; 15(1): 476, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38216587

ABSTRACT

Mechanisms specifying cancer cell states and response to therapy are incompletely understood. Here we show epigenetic reprogramming shapes the cellular landscape of schwannomas, the most common tumors of the peripheral nervous system. We find schwannomas are comprised of 2 molecular groups that are distinguished by activation of neural crest or nerve injury pathways that specify tumor cell states and the architecture of the tumor immune microenvironment. Moreover, we find radiotherapy is sufficient for interconversion of neural crest schwannomas to immune-enriched schwannomas through epigenetic and metabolic reprogramming. To define mechanisms underlying schwannoma groups, we develop a technique for simultaneous interrogation of chromatin accessibility and gene expression coupled with genetic and therapeutic perturbations in single-nuclei. Our results elucidate a framework for understanding epigenetic drivers of tumor evolution and establish a paradigm of epigenetic and metabolic reprograming of cancer cells that shapes the immune microenvironment in response to radiotherapy.


Subject(s)
Neurilemmoma , Humans , Neurilemmoma/genetics , Neurilemmoma/pathology , Epigenesis, Genetic , Cellular Reprogramming/genetics , Tumor Microenvironment/genetics
4.
Res Sq ; 2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36993679

ABSTRACT

Meningiomas are the most common primary intracranial tumors and are associated with inactivation of the tumor suppressor NF2/Merlin, but one-third of meningiomas retain Merlin expression and typically have favorable clinical outcomes. Biochemical mechanisms underlying Merlin-intact meningioma growth are incompletely understood, and non-invasive biomarkers that predict meningioma outcomes and could be used to guide treatment de-escalation or imaging surveillance of Merlin-intact meningiomas are lacking. Here we integrate single-cell RNA sequencing, proximity-labeling proteomic mass spectrometry, mechanistic and functional approaches, and magnetic resonance imaging (MRI) across meningioma cells, xenografts, and human patients to define biochemical mechanisms and an imaging biomarker that distinguish Merlin-intact meningiomas with favorable clinical outcomes from meningiomas with unfavorable clinical outcomes. We find Merlin drives meningioma Wnt signaling and tumor growth through a feed-forward mechanism that requires Merlin dephosphorylation on serine 13 (S13) to attenuate inhibitory interactions with ß-catenin and activate the Wnt pathway. Meningioma MRI analyses of xenografts and human patients show Merlin-intact meningiomas with S13 phosphorylation and favorable clinical outcomes are associated with high apparent diffusion coefficient (ADC) on diffusion-weighted imaging. In sum, our results shed light on Merlin posttranslational modifications that regulate meningioma Wnt signaling and tumor growth in tumors without NF2/Merlin inactivation. To translate these findings to clinical practice, we establish a non-invasive imaging biomarker that could be used to guide treatment de-escalation or imaging surveillance for patients with favorable meningiomas.

5.
Nat Genet ; 54(5): 649-659, 2022 05.
Article in English | MEDLINE | ID: mdl-35534562

ABSTRACT

Meningiomas are the most common primary intracranial tumors. There are no effective medical therapies for meningioma patients, and new treatments have been encumbered by limited understanding of meningioma biology. Here, we use DNA methylation profiling on 565 meningiomas integrated with genetic, transcriptomic, biochemical, proteomic and single-cell approaches to show meningiomas are composed of three DNA methylation groups with distinct clinical outcomes, biological drivers and therapeutic vulnerabilities. Merlin-intact meningiomas (34%) have the best outcomes and are distinguished by NF2/Merlin regulation of susceptibility to cytotoxic therapy. Immune-enriched meningiomas (38%) have intermediate outcomes and are distinguished by immune infiltration, HLA expression and lymphatic vessels. Hypermitotic meningiomas (28%) have the worst outcomes and are distinguished by convergent genetic and epigenetic mechanisms driving the cell cycle and resistance to cytotoxic therapy. To translate these findings into clinical practice, we show cytostatic cell cycle inhibitors attenuate meningioma growth in cell culture, organoids, xenografts and patients.


Subject(s)
Meningeal Neoplasms , Meningioma , DNA Methylation/genetics , Humans , Meningeal Neoplasms/genetics , Meningioma/genetics , Neurofibromin 2/genetics , Proteomics
SELECTION OF CITATIONS
SEARCH DETAIL
...