Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
ACS Omega ; 7(14): 11818-11828, 2022 Apr 12.
Article in English | MEDLINE | ID: mdl-35449984

ABSTRACT

Puwainaphycins (PUW) and minutissamides (MIN) are structurally homologous cyclic lipopeptides that exhibit high structural variability and possess antifungal and cytotoxic activities. While only a minor variation can be found in the amino acid composition of the peptide cycle, the fatty acid (FA) moiety varies largely. The effect of FA functionalization on the bioactivity of PUW/MIN chemical variants is poorly understood. A rapid and selective liquid chromatography-mass spectrometry-based method led us to identify 13 PUW/MIN (1-13) chemical variants from the benthic cyanobacterium Nodularia harveyana strain UHCC-0300 from the Baltic Sea. Five new variants identified were designated as PUW H (1), PUW I (2), PUW J (4), PUW K (10), and PUW L (13) and varied slightly in the peptidic core composition, but a larger variation was observed in the oxo-, chloro-, and hydroxy-substitutions on the FA moiety. To address the effect of FA substitution on the cytotoxic effect, the major variants (3 and 5-11) together with four other PUW/MIN variants (14-17) previously isolated were included in the study. The data obtained showed that hydroxylation of the FA moiety abolishes the cytotoxicity or significantly reduces it when compared with the oxo-substituted C18-FA (compounds 5-8). The oxo-substitution had only a minor effect on the cytotoxicity of the compound when compared to variants bearing no substitution. The activity of PUW/MIN variants with chlorinated FA moieties varied depending on the position of the chlorine atom on the FA chain. This study also shows that variation in the amino acids distant from the FA moiety (position 4-8 of the peptide cycle) does not play an important role in determining the cytotoxicity of the compound. These findings confirmed that the lipophilicity of FA is essential to maintain the cytotoxicity of PUW/MIN lipopeptides. Further, a 63 kb puwainaphycin biosynthetic gene cluster from a draft genome of the N. harveyana strain UHCC-0300 was identified. This pathway encoded two specific lipoinitiation mechanisms as well as enzymes needed for the modification of the FA moiety. Examination on biosynthetic gene clusters and the structural variability of the produced PUW/MIN suggested different mechanisms of fatty-acyl-AMP ligase cooperation with accessory enzymes leading to a new set of PUW/MIN variants bearing differently substituted FA.

2.
Mar Drugs ; 19(12)2021 Nov 26.
Article in English | MEDLINE | ID: mdl-34940666

ABSTRACT

Porifera, commonly referred to as marine sponges, are acknowledged as major producers of marine natural products (MNPs). Sponges of the genus Phorbas have attracted much attention over the years. They are widespread in all continents, and several structurally unique compounds have been identified from this species. Terpenes, mainly sesterterpenoids, are the major secondary metabolites isolated from Phorbas species, even though several alkaloids and steroids have also been reported. Many of these compounds have presented interesting biological activities. Particularly, Phorbas sponges have been demonstrated to be a source of cytotoxic metabolites. In addition, MNPs exhibiting cytostatic, antimicrobial, and anti-inflammatory activities have been isolated and structurally characterized. This review provides an overview of almost 130 secondary metabolites from Phorbas sponges and their biological activities, and it covers the literature since the first study published in 1993 until November 2021, including approximately 60 records. The synthetic routes to the most interesting compounds are briefly outlined.


Subject(s)
Biological Products , Macrolides , Porifera , Animals , Aquatic Organisms , Drug Discovery
3.
Appl Environ Microbiol ; 87(17): e0312820, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34132591

ABSTRACT

Cyanobacteria require iron for growth and often inhabit iron-limited habitats, yet only a few siderophores are known to be produced by them. We report that cyanobacterial genomes frequently encode polyketide synthase (PKS)/nonribosomal peptide synthetase (NRPS) biosynthetic pathways for synthesis of lipopeptides featuring ß-hydroxyaspartate (ß-OH-Asp), a residue known to be involved in iron chelation. Iron starvation triggered the synthesis of ß-OH-Asp lipopeptides in the cyanobacteria Rivularia sp. strain PCC 7116, Leptolyngbya sp. strain NIES-3755, and Rubidibacter lacunae strain KORDI 51-2. The induced compounds were confirmed to bind iron by mass spectrometry (MS) and were capable of Fe3+ to Fe2+ photoreduction, accompanied by their cleavage, when exposed to sunlight. The siderophore from Rivularia, named cyanochelin A, was structurally characterized by MS and nuclear magnetic resonance (NMR) and found to contain a hydrophobic tail bound to phenolate and oxazole moieties followed by five amino acids, including two modified aspartate residues for iron chelation. Phylogenomic analysis revealed 26 additional cyanochelin-like gene clusters across a broad range of cyanobacterial lineages. Our data suggest that cyanochelins and related compounds are widespread ß-OH-Asp-featuring cyanobacterial siderophores produced by phylogenetically distant species upon iron starvation. Production of photolabile siderophores by phototrophic cyanobacteria raises questions about whether the compounds facilitate iron monopolization by the producer or, rather, provide Fe2+ for the whole microbial community via photoreduction. IMPORTANCE All living organisms depend on iron as an essential cofactor for indispensable enzymes. However, the sources of bioavailable iron are often limited. To face this problem, microorganisms synthesize low-molecular-weight metabolites capable of iron scavenging, i.e., the siderophores. Although cyanobacteria inhabit the majority of the Earth's ecosystems, their repertoire of known siderophores is remarkably poor. Their genomes are known to harbor a rich variety of gene clusters with unknown function. Here, we report the awakening of a widely distributed class of silent gene clusters by iron starvation to yield cyanochelins, ß-hydroxy aspartate lipopeptides involved in iron acquisition. Our results expand the limited arsenal of known cyanobacterial siderophores and propose products with ecological function for a number of previously orphan gene clusters.


Subject(s)
Cyanobacteria/metabolism , Multigene Family , Siderophores/biosynthesis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Biosynthetic Pathways , Cyanobacteria/classification , Cyanobacteria/enzymology , Cyanobacteria/genetics , Lipopeptides/metabolism , Peptide Synthases/genetics , Peptide Synthases/metabolism , Phylogeny , Polyketide Synthases/genetics , Polyketide Synthases/metabolism
4.
Int J Mol Sci ; 22(5)2021 Mar 08.
Article in English | MEDLINE | ID: mdl-33800505

ABSTRACT

Chemotherapy represents the most applied approach to cancer treatment. Owing to the frequent onset of chemoresistance and tumor relapses, there is an urgent need to discover novel and more effective anticancer drugs. In the search for therapeutic alternatives to treat the cancer disease, a series of hybrid pyrazolo[3,4-d]pyrimidin-4(5H)-ones tethered with hydrazide-hydrazones, 5a-h, was synthesized from condensation reaction of pyrazolopyrimidinone-hydrazide 4 with a series of arylaldehydes in ethanol, in acid catalysis. In vitro assessment of antiproliferative effects against MCF-7 breast cancer cells, unveiled that 5a, 5e, 5g, and 5h were the most effective compounds of the series and exerted their cytotoxic activity through apoptosis induction and G0/G1 phase cell-cycle arrest. To explore their mechanism at a molecular level, 5a, 5e, 5g, and 5h were evaluated for their binding interactions with two well-known anticancer targets, namely the epidermal growth factor receptor (EGFR) and the G-quadruplex DNA structures. Molecular docking simulations highlighted high binding affinity of 5a, 5e, 5g, and 5h towards EGFR. Circular dichroism (CD) experiments suggested 5a as a stabilizer agent of the G-quadruplex from the Kirsten ras (KRAS) oncogene promoter. In the light of these findings, we propose the pyrazolo-pyrimidinone scaffold bearing a hydrazide-hydrazone moiety as a lead skeleton for designing novel anticancer compounds.


Subject(s)
Apoptosis/drug effects , Breast Neoplasms , Cell Proliferation/drug effects , G-Quadruplexes , Molecular Docking Simulation , Proto-Oncogene Proteins p21(ras) , Pyrimidinones , Antineoplastic Agents , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Drug Screening Assays, Antitumor , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/chemistry , ErbB Receptors/metabolism , Female , Humans , MCF-7 Cells , Proto-Oncogene Proteins p21(ras)/antagonists & inhibitors , Proto-Oncogene Proteins p21(ras)/chemistry , Proto-Oncogene Proteins p21(ras)/metabolism , Pyrimidinones/chemical synthesis , Pyrimidinones/chemistry , Pyrimidinones/pharmacology
5.
Molecules ; 25(17)2020 Aug 20.
Article in English | MEDLINE | ID: mdl-32825321

ABSTRACT

Heterocytous cyanobacteria are among the most prolific sources of bioactive secondary metabolites, including anabaenopeptins (APTs). A terrestrial filamentous Brasilonema sp. CT11 collected in Costa Rica bamboo forest as a black mat, was studied using a multidisciplinary approach: genome mining and HPLC-HRMS/MS coupled with bioinformatic analyses. Herein, we report the nearly complete genome consisting of 8.79 Mbp with a GC content of 42.4%. Moreover, we report on three novel tryptophan-containing APTs; anabaenopeptin 788 (1), anabaenopeptin 802 (2), and anabaenopeptin 816 (3). Furthermore, the structure of two homologues, i.e., anabaenopeptin 802 (2a) and anabaenopeptin 802 (2b), was determined by spectroscopic analysis (NMR and MS). Both compounds were shown to exert weak to moderate antiproliferative activity against HeLa cell lines. This study also provides the unique and diverse potential of biosynthetic gene clusters and an assessment of the predicted chemical space yet to be discovered from this genus.


Subject(s)
Cell Proliferation/drug effects , Cyanobacteria , Peptides, Cyclic , Cyanobacteria/chemistry , Cyanobacteria/genetics , HeLa Cells , Humans , Mass Spectrometry , Nuclear Magnetic Resonance, Biomolecular , Peptides, Cyclic/chemistry , Peptides, Cyclic/genetics , Peptides, Cyclic/isolation & purification , Peptides, Cyclic/pharmacology
6.
Mar Drugs ; 18(2)2020 Feb 20.
Article in English | MEDLINE | ID: mdl-32093216

ABSTRACT

Marine sponges, a well-documented prolific source of natural products, harbor highly diverse microbial communities. Their extracts were previously shown to contain quorum sensing (QS) signal molecules of the N-acyl homoserine lactone (AHL) type, known to orchestrate bacterial gene regulation. Some bacteria and eukaryotic organisms are known to produce molecules that can interfere with QS signaling, thus affecting microbial genetic regulation and function. In the present study, we established the production of both QS signal molecules as well as QS inhibitory (QSI) molecules in the sponge species Sarcotragus spinosulus. A total of eighteen saturated acyl chain AHLs were identified along with six unsaturated acyl chain AHLs. Bioassay-guided purification led to the isolation of two brominated metabolites with QSI activity. The structures of these compounds were elucidated by comparative spectral analysis of 1HNMR and HR-MS data and were identified as 3-bromo-4-methoxyphenethylamine (1) and 5,6-dibromo-N,N-dimethyltryptamine (2). The QSI activity of compounds 1 and 2 was evaluated using reporter gene assays for long- and short-chain AHL signals (Escherichia coli pSB1075 and E. coli pSB401, respectively). QSI activity was further confirmed by measuring dose-dependent inhibition of proteolytic activity and pyocyanin production in Pseudomonas aeruginosa PAO1. The obtained results show the coexistence of QS and QSI in S. spinosulus, a complex signal network that may mediate the orchestrated function of the microbiome within the sponge holobiont.


Subject(s)
Escherichia coli/drug effects , Porifera/metabolism , Porifera/microbiology , Quorum Sensing/drug effects , Animals , Escherichia coli/physiology , Luminescent Measurements , Peptide Hydrolases/chemistry , Peptide Hydrolases/pharmacology , Phylogeny , Porifera/genetics , Pyocyanine/chemistry , Pyocyanine/pharmacology , Virulence Factors
7.
Mar Drugs ; 17(11)2019 Oct 30.
Article in English | MEDLINE | ID: mdl-31671549

ABSTRACT

Caribbean sponges of the genus Smenospongia are a prolific source of chlorinated secondary metabolites. The use of molecular networking as a powerful dereplication tool revealed in the metabolome of S. aurea two new members of the smenamide family, namely smenamide F (1) and G (2). The structure of smenamide F (1) and G (2) was determined by spectroscopic analysis (NMR, MS, ECD). The relative and the absolute configuration at C-13, C-15, and C-16 was determined on the basis of the conformational rigidity of a 1,3-disubstituted alkyl chain system (i.e., the C-12/C-18 segment of compound (1). Smenamide F (1) and G (2) were shown to exert a selective moderate antiproliferative activity against cancer cell lines MCF-7 and MDA-MB-231, while being inactive against MG-63.


Subject(s)
Biological Products/pharmacology , Drug Screening Assays, Antitumor/methods , Porifera/chemistry , Animals , Antineoplastic Agents/pharmacology , Caribbean Region , Cell Line, Tumor , Cell Proliferation/drug effects , Fibroblasts , Humans , MCF-7 Cells , Magnetic Resonance Spectroscopy , Metabolome , Molecular Structure , Porifera/metabolism
8.
Mar Drugs ; 16(6)2018 Jun 13.
Article in English | MEDLINE | ID: mdl-29899231

ABSTRACT

Smenamides are an intriguing class of peptide/polyketide molecules of marine origin showing antiproliferative activity against lung cancer Calu-1 cells at nanomolar concentrations through a clear pro-apoptotic mechanism. To probe the role of the activity-determining structural features, the 16-epi-analogue of smenamide A and eight simplified analogues in the 16-epi series were prepared using a flexible synthetic route. The synthetic analogues were tested on multiple myeloma (MM) cell lines showing that the configuration at C-16 slightly affects the activity, since the 16-epi-derivative is still active at nanomolar concentrations. Interestingly, it was found that the truncated compound 8, mainly composed of the pyrrolinone terminus, was not active, while compound 13, essentially lacking the pyrrolinone moiety, was 1000-fold less active than the intact substance and was the most active among all the synthesized compounds.


Subject(s)
Antineoplastic Agents/chemistry , Aquatic Organisms/chemistry , Cell Proliferation/drug effects , Porifera/chemistry , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Drug Design , Humans , Molecular Structure , Multiple Myeloma/drug therapy , Peptides/chemistry , Peptides/pharmacology , Peptides/therapeutic use , Polyketides/chemistry , Polyketides/pharmacology , Polyketides/therapeutic use , Structure-Activity Relationship
9.
Int J Mol Sci ; 18(10)2017 Oct 09.
Article in English | MEDLINE | ID: mdl-28991212

ABSTRACT

Marine sponges are an excellent source of bioactive secondary metabolites for pharmacological applications. In the present study, we evaluated the chemistry, cytotoxicity and metabolomics of an organic extract from the Mediterranean marine sponge Geodia cydonium, collected in coastal waters of the Gulf of Naples. We identified an active fraction able to block proliferation of breast cancer cell lines MCF-7, MDA-MB231, and MDA-MB468 and to induce cellular apoptosis, whereas it was inactive on normal breast cells (MCF-10A). Metabolomic studies showed that this active fraction was able to interfere with amino acid metabolism, as well as to modulate glycolysis and glycosphingolipid metabolic pathways. In addition, the evaluation of the cytokinome profile on the polar fractions of three treated breast cancer cell lines (compared to untreated cells) demonstrated that this fraction induced a slight anti-inflammatory effect. Finally, the chemical entities present in this fraction were analyzed by liquid chromatography high resolution mass spectrometry combined with molecular networking.


Subject(s)
Breast Neoplasms/metabolism , Geodia/chemistry , Plant Extracts/pharmacology , Animals , Apoptosis/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Glycolysis/drug effects , Glycosphingolipids/metabolism , Humans , MCF-7 Cells
10.
ACS Omega ; 2(4): 1477-1488, 2017 Apr 30.
Article in English | MEDLINE | ID: mdl-30023636

ABSTRACT

A chiral pool protocol toward the synthesis of the smenamide family of natural products is described. Two stereoisomers of smenamide A, namely, ent-smenamide A and 16-epi-smenamide A were synthesized with a 2.6 and 2.5% overall yield, respectively. Their carboxylic acid moieties were assembled starting from S-citronellene via two Wittig reactions and a Grignard process. Its coupling with either (S)- or (R)-dolapyrrolidinone, synthesized from Boc-l-Phe and Boc-d-Phe, respectively, was accomplished by using the Andrus protocol. This work also established the previously unknown relative and absolute configurations of smenamide A.

SELECTION OF CITATIONS
SEARCH DETAIL
...