Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Cerebellum ; 23(2): 620-677, 2024 Apr.
Article in English | MEDLINE | ID: mdl-36781689

ABSTRACT

The cerebellum is a key player in many brain functions and a major topic of neuroscience research. However, the cerebellar nuclei (CN), the main output structures of the cerebellum, are often overlooked. This neglect is because research on the cerebellum typically focuses on the cortex and tends to treat the CN as relatively simple output nuclei conveying an inverted signal from the cerebellar cortex to the rest of the brain. In this review, by adopting a nucleocentric perspective we aim to rectify this impression. First, we describe CN anatomy and modularity and comprehensively integrate CN architecture with its highly organized but complex afferent and efferent connectivity. This is followed by a novel classification of the specific neuronal classes the CN comprise and speculate on the implications of CN structure and physiology for our understanding of adult cerebellar function. Based on this thorough review of the adult literature we provide a comprehensive overview of CN embryonic development and, by comparing cerebellar structures in various chordate clades, propose an interpretation of CN evolution. Despite their critical importance in cerebellar function, from a clinical perspective intriguingly few, if any, neurological disorders appear to primarily affect the CN. To highlight this curious anomaly, and encourage future nucleocentric interpretations, we build on our review to provide a brief overview of the various syndromes in which the CN are currently implicated. Finally, we summarize the specific perspectives that a nucleocentric view of the cerebellum brings, move major outstanding issues in CN biology to the limelight, and provide a roadmap to the key questions that need to be answered in order to create a comprehensive integrated model of CN structure, function, development, and evolution.


Subject(s)
Cerebellar Nuclei , Cerebellum , Cerebellar Nuclei/diagnostic imaging , Cerebellar Nuclei/physiology , Cerebellum/physiology , Neurons/physiology
2.
Front Cell Neurosci ; 17: 1253543, 2023.
Article in English | MEDLINE | ID: mdl-38026702

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a progressive, lethal neurodegenerative disease mostly affecting people around 50-60 years of age. TDP-43, an RNA-binding protein involved in pre-mRNA splicing and controlling mRNA stability and translation, forms neuronal cytoplasmic inclusions in an overwhelming majority of ALS patients, a phenomenon referred to as TDP-43 proteinopathy. These cytoplasmic aggregates disrupt mRNA transport and localization. The axon, like dendrites, is a site of mRNA translation, permitting the local synthesis of selected proteins. This is especially relevant in upper and lower motor neurons, whose axon spans long distances, likely accentuating their susceptibility to ALS-related noxae. In this work we have generated and characterized two cellular models, consisting of virtually pure populations of primary mouse cortical neurons expressing a human TDP-43 fusion protein, wt or carrying an ALS mutation. Both forms facilitate cytoplasmic aggregate formation, unlike the corresponding native proteins, giving rise to bona fide primary culture models of TDP-43 proteinopathy. Neurons expressing TDP-43 fusion proteins exhibit a global impairment in axonal protein synthesis, an increase in oxidative stress, and defects in presynaptic function and electrical activity. These changes correlate with deregulation of axonal levels of polysome-engaged mRNAs playing relevant roles in the same processes. Our data support the emerging notion that deregulation of mRNA metabolism and of axonal mRNA transport may trigger the dying-back neuropathy that initiates motor neuron degeneration in ALS.

3.
Retina ; 43(8): 1348-1355, 2023 08 01.
Article in English | MEDLINE | ID: mdl-36996465

ABSTRACT

PURPOSE: To describe a sign that takes the form of a continuous hyperreflective band within the thickness of the ganglion cell layer (GCL), thus dubbed the "hyperreflective ganglion cell layer band" (HGB), which the authors detected in a fraction of patients affected by retinitis pigmentosa (RP). METHODS: Retrospective, cross-sectional, observational study. Optical coherence tomography (OCT) images of patients with RP examined between May 2015 and June 2021 were retrospectively reviewed for the presence of HGB, epiretinal membrane (ERM), macular hole, and cystoid macular edema (CME). The ellipsoid zone (EZ) width was also measured. A subgroup of patients underwent microperimetry in the central 2°, 4°, and 10°. RESULTS: One hundred and fifty-four eyes from 77 subjects were included in the study. The HGB was present in 39 (25.3%) eyes with RP. Mean best-corrected visual acuity (BCVA) was 0.39 ± 0.05 logMAR (approximately 20/50 Snellen equivalent) and 0.18 ± 0.03 logMAR (approximately 20/32 Snellen equivalent) in eyes with and without HGB, respectively ( P < 0.001). The two groups did not differ regarding EZ width; mean 2°, 4°, and 10° retinal sensitivity; and prevalence of CME, ERM, and macular hole. The multivariable analysis showed the presence of HGB to be a predictor of poorer BCVA ( P < 0.001). CONCLUSION: HGB is an OCT finding detectable in approximately a quarter of eyes with RP and is associated with a poorer visual function. In the discussion, the authors speculate about possible morphogenetic scenarios to explain this observation.


Subject(s)
Epiretinal Membrane , Macular Edema , Retinal Perforations , Retinitis Pigmentosa , Humans , Retrospective Studies , Retinal Perforations/complications , Cross-Sectional Studies , Retina , Retinitis Pigmentosa/diagnosis , Macular Edema/diagnosis , Epiretinal Membrane/diagnosis , Tomography, Optical Coherence/methods
4.
Int J Mol Sci ; 22(6)2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33804256

ABSTRACT

Lysosomal acid phosphatase 2 (Acp2) mutant mice (naked-ataxia, nax) have a severe cerebellar cortex defect with a striking reduction in the number of granule cells. Using a combination of in vivo and in vitro immunohistochemistry, Western blotting, BrdU assays, and RT-qPCR, we show downregulation of MYCN and dysregulation of the SHH signaling pathway in the nax cerebellum. MYCN protein expression is significantly reduced at P10, but not at the peak of proliferation at around P6 when the number of granule cells is strikingly reduced in the nax cerebellum. Despite the significant role of the SHH-MycN pathway in granule cell proliferation, our study suggests that a broader molecular pathway and additional mechanisms regulating granule cell development during the clonal expansion period are impaired in the nax cerebellum. In particular, our results indicate that downregulation of the protein synthesis machinery may contribute to the reduced number of granule cells in the nax cerebellum.


Subject(s)
Acid Phosphatase/genetics , Cerebellar Ataxia/genetics , Cerebellar Cortex/metabolism , Hedgehog Proteins/genetics , N-Myc Proto-Oncogene Protein/genetics , Animals , Cell Differentiation/genetics , Cell Proliferation/genetics , Cerebellar Ataxia/metabolism , Cerebellar Ataxia/pathology , Cerebellar Cortex/abnormalities , Cerebellar Cortex/pathology , Cytoplasmic Granules/genetics , Cytoplasmic Granules/pathology , Disease Models, Animal , Gene Expression Regulation, Developmental , Humans , Lysosomes/genetics , Lysosomes/pathology , Mice , Mutation , Neurons/metabolism , Neurons/pathology , Purkinje Cells/metabolism , Purkinje Cells/pathology , Signal Transduction/genetics
5.
Development ; 147(22)2020 11 30.
Article in English | MEDLINE | ID: mdl-33046507

ABSTRACT

The choroid plexus (ChP) is a secretory tissue that produces cerebrospinal fluid (CSF) secreted into the ventricular system. It is a monolayer of secretory, multiciliated epithelial cells derived from neuroepithelial progenitors and overlying a stroma of mesenchymal cells of mesodermal origin. Zfp423, which encodes a Kruppel-type zinc-finger transcription factor essential for cerebellar development and mutated in rare cases of cerebellar vermis hypoplasia/Joubert syndrome and other ciliopathies, is expressed in the hindbrain roof plate, from which the IV ventricle ChP arises, and, later, in mesenchymal cells, which give rise to the stroma and leptomeninges. Mouse Zfp423 mutants display a marked reduction of the hindbrain ChP (hChP), which: (1) fails to express established markers of its secretory function and genes implicated in its development and maintenance (Lmx1a and Otx2); (2) shows a perturbed expression of signaling pathways previously unexplored in hChP patterning (Wnt3); and (3) displays a lack of multiciliated epithelial cells and a profound dysregulation of master genes of multiciliogenesis (Gmnc). Our results propose that Zfp423 is a master gene and one of the earliest known determinants of hChP development.


Subject(s)
Choroid Plexus/embryology , DNA-Binding Proteins/metabolism , Rhombencephalon/embryology , Transcription Factors/metabolism , Animals , Choroid Plexus/cytology , DNA-Binding Proteins/genetics , LIM-Homeodomain Proteins/genetics , LIM-Homeodomain Proteins/metabolism , Mice , Mice, Mutant Strains , Otx Transcription Factors/genetics , Otx Transcription Factors/metabolism , Rhombencephalon/cytology , Transcription Factors/genetics , Wnt3 Protein/genetics , Wnt3 Protein/metabolism
6.
EMBO J ; 39(19): e104633, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32761635

ABSTRACT

Hypothalamic neurons expressing gonadotropin-releasing hormone (GnRH), the "master molecule" regulating reproduction and fertility, migrate from their birthplace in the nose to their destination using a system of guidance cues, which include the semaphorins and their receptors, the neuropilins and plexins, among others. Here, we show that selectively deleting neuropilin-1 in new GnRH neurons enhances their survival and migration, resulting in excess neurons in the hypothalamus and in their unusual accumulation in the accessory olfactory bulb, as well as an acceleration of mature patterns of activity. In female mice, these alterations result in early prepubertal weight gain, premature attraction to male odors, and precocious puberty. Our findings suggest that rather than being influenced by peripheral energy state, GnRH neurons themselves, through neuropilin-semaphorin signaling, might engineer the timing of puberty by regulating peripheral adiposity and behavioral switches, thus acting as a bridge between the reproductive and metabolic axes.


Subject(s)
Gene Expression Regulation , Gonadotropin-Releasing Hormone/metabolism , Neurons/metabolism , Neuropilin-1/biosynthesis , Sexual Behavior, Animal , Sexual Maturation , Weight Gain , Animals , Female , Gonadotropin-Releasing Hormone/genetics , Male , Mice , Mice, Transgenic , Neuropilin-1/genetics
7.
Front Neural Circuits ; 14: 611841, 2020.
Article in English | MEDLINE | ID: mdl-33519389

ABSTRACT

Granule cells (GCs) are the most numerous cell type in the cerebellum and indeed, in the brain: at least 99% of all cerebellar neurons are granule cells. In this review article, we first consider the formation of the upper rhombic lip, from which all granule cell precursors arise, and the way by which the upper rhombic lip generates the external granular layer, a secondary germinal epithelium that serves to amplify the upper rhombic lip precursors. Next, we review the mechanisms by which postmitotic granule cells are generated in the external granular layer and migrate radially to settle in the granular layer. In addition, we review the evidence that far from being a homogeneous population, granule cells come in multiple phenotypes with distinct topographical distributions and consider ways in which the heterogeneity of granule cells might arise during development.


Subject(s)
Cell Differentiation/physiology , Cell Movement/physiology , Cerebellum/physiology , Neurons/physiology , Animals , Humans , Interneurons/physiology , Neocortex/physiology
8.
Am J Hum Genet ; 106(1): 58-70, 2020 01 02.
Article in English | MEDLINE | ID: mdl-31883645

ABSTRACT

Congenital hypogonadotropic hypogonadism (CHH) is a rare genetic disorder characterized by infertility and the absence of puberty. Defects in GnRH neuron migration or altered GnRH secretion and/or action lead to a severe gonadotropin-releasing hormone (GnRH) deficiency. Given the close developmental association of GnRH neurons with the olfactory primary axons, CHH is often associated with anosmia or hyposmia, in which case it is defined as Kallmann syndrome (KS). The genetics of CHH are heterogeneous, and >40 genes are involved either alone or in combination. Several CHH-related genes controlling GnRH ontogeny encode proteins containing fibronectin-3 (FN3) domains, which are important for brain and neural development. Therefore, we hypothesized that defects in other FN3-superfamily genes would underlie CHH. Next-generation sequencing was performed for 240 CHH unrelated probands and filtered for rare, protein-truncating variants (PTVs) in FN3-superfamily genes. Compared to gnomAD controls the CHH cohort was statistically enriched for PTVs in neuron-derived neurotrophic factor (NDNF) (p = 1.40 × 10-6). Three heterozygous PTVs (p.Lys62∗, p.Tyr128Thrfs∗55, and p.Trp469∗, all absent from the gnomAD database) and an additional heterozygous missense mutation (p.Thr201Ser) were found in four KS probands. Notably, NDNF is expressed along the GnRH neuron migratory route in both mouse embryos and human fetuses and enhances GnRH neuron migration. Further, knock down of the zebrafish ortholog of NDNF resulted in altered GnRH migration. Finally, mice lacking Ndnf showed delayed GnRH neuron migration and altered olfactory axonal projections to the olfactory bulb; both results are consistent with a role of NDNF in GnRH neuron development. Altogether, our results highlight NDNF as a gene involved in the GnRH neuron migration implicated in KS.


Subject(s)
Cell Movement , Hypogonadism/congenital , Hypogonadism/genetics , Mutation , Nerve Growth Factors/genetics , Neurons/pathology , Adolescent , Animals , Cohort Studies , Female , Heterozygote , Humans , Hypogonadism/pathology , Male , Mice , Mice, Knockout , Nerve Growth Factors/physiology , Neurons/metabolism , Pedigree , Zebrafish
9.
Cerebellum ; 18(6): 999-1010, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31273610

ABSTRACT

The collier/Olf1/EBF family genes encode helix-loop-helix transcription factors (TFs) highly conserved in evolution, initially characterized for their roles in the immune system and in various aspects of neural development. The Early B cell Factor 2 (Ebf2) gene plays an important role in the establishment of cerebellar cortical topography and in Purkinje cell (PC) subtype specification. In the adult cerebellum, Ebf2 is expressed in zebrin II (ZII)-negative PCs, where it suppresses the ZII+ molecular phenotype. However, it is not clear whether Ebf2 is restricted to a PC subset from the onset of its expression or is initially distributed in all PCs and silenced only later in the prospective ZII+ subtype. Moreover, the dynamic distribution and role of Ebf2 in the differentiation of other cerebellar cells remain unclarified. In this paper, by genetic fate mapping, we determine that Ebf2 mRNA is initially found in all PC progenitors, suggesting that unidentified upstream factors silence its expression before completion of embryogenesis. Moreover we show Ebf2 activation in an early born subset of granule cell (GC) precursors homing in the anterior lobe. Conversely, Ebf2 transcription is repressed in other cerebellar cortex interneurons. Last, we show that, although Ebf2 only labels the medial cerebellar nuclei (CN) in the adult cerebellum, the gene is expressed prenatally in projection neurons of all CN. Importantly, in Ebf2 nulls, fastigial nuclei are severely hypocellular, mirroring the defective development of anterior lobe PCs. Our findings further clarify the roles of this terminal selector gene in cerebellar development.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/biosynthesis , Cerebellum/embryology , Cerebellum/metabolism , Gene Expression Regulation, Developmental , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Cell Survival/physiology , Cerebellum/growth & development , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Purkinje Cells/metabolism
10.
Int J Mol Sci ; 20(6)2019 Mar 25.
Article in English | MEDLINE | ID: mdl-30934534

ABSTRACT

The discovery of the role of the RAS/RAF/MEK/ERK pathway in melanomagenesis and its progression have opened a new era in the treatment of this tumor. Vemurafenib was the first specific kinase inhibitor approved for therapy of advanced melanomas harboring BRAF-activating mutations, followed by dabrafenib and encorafenib. However, despite the excellent results of first-generation kinase inhibitors in terms of response rate, the average duration of the response was short, due to the onset of genetic and epigenetic resistance mechanisms. The combination therapy with MEK inhibitors is an excellent strategy to circumvent drug resistance, with the additional advantage of reducing side effects due to the paradoxical reactivation of the MAPK pathway. The recent development of RAS and extracellular signal-related kinases (ERK) inhibitors promises to add new players for the ultimate suppression of this signaling pathway and the control of pathway-related drug resistance. In this review, we analyze the pharmacological, preclinical, and clinical trial data of the various MAPK pathway inhibitors, with a keen interest for their clinical applicability in the management of advanced melanoma.


Subject(s)
MAP Kinase Signaling System , Melanoma/enzymology , Animals , Extracellular Signal-Regulated MAP Kinases/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , Mutation/genetics , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use
11.
Front Cell Neurosci ; 12: 228, 2018.
Article in English | MEDLINE | ID: mdl-30127721

ABSTRACT

One key signaling pathway known to influence neuronal migration involves the extracellular matrix protein Reelin. Typically, signaling of Reelin occurs via apolipoprotein E receptor 2 (ApoER2) and very low-density lipoprotein receptor (VLDLR), and the cytoplasmic adapter protein disabled 1 (Dab1). However, non-canonical Reelin signaling has been reported, though no receptors have yet been identified. Cariboni et al. (2005) indicated Dab1-independent Reelin signaling impacts gonadotropin releasing hormone-1 (GnRH) neuronal migration. GnRH cells are essential for reproduction. Prenatal migration of GnRH neurons from the nasal placode to the forebrain, juxtaposed to olfactory axons and olfactory ensheathing cells (OECs), has been well documented, and it is clear that alterations in migration of these cells can cause delayed or absent puberty. This study was initiated to delineate the non-canonical Reelin signaling pathways used by GnRH neurons. Chronic treatment of nasal explants with CR-50, an antibody known to interfere with Reelin homopolymerization and Dab1 phosphorylation, decreased the distance GnRH neurons and OECs migrated. Normal migration of these two cell types was observed when Reelin was co-applied with CR-50. Immunocytochemistry was performed to determine if OECs might transduce Reelin signals via the canonical pathway, and subsequently indirectly altering GnRH neuronal migration. We show that in mouse: (1) both OECs and GnRH cells express ApoER2, VLDLR and Dab1, and (2) GnRH neurons and OECs show a normal distribution in the brain of two mutant reeler lines. These results indicate that the canonical Reelin pathway is present in GnRH neurons and OECs, but that Reelin is not essential for development of these two systems in vivo.

12.
Eur Neuropsychopharmacol ; 28(10): 1103-1114, 2018 10.
Article in English | MEDLINE | ID: mdl-30104163

ABSTRACT

The TTC12-ANKK1-DRD2 gene-cluster has been implicated in adult smoking. Here, we investigated the contribution of individual genes in the TTC12-ANKK1-DRD2 cluster in smoking and their association with smoking-associated reward processing in adolescence. A meta-analysis of TTC12-ANKK1-DRD2 variants and self-reported smoking behaviours was performed in four European adolescent cohorts (N = 14,084). The minor G-allele of rs2236709, mapping TTC12, was associated with self-reported smoking (p = 5.0 × 10-4) and higher plasma cotinine levels (p = 7.0 × 10-5). This risk allele was linked to an increased ventral-striatal blood-oxygen level-dependent (BOLD) response during reward anticipation (n = 1,263) and with higher DRD2 gene expression in the striatum (p = 0.013), but not with TTC12 or ANKK gene expression. These data suggest a role for the TTC12-ANKK1-DRD2 gene-cluster in adolescent smoking behaviours, provide evidence for the involvement of DRD2 in the early stages of addiction and support the notion that genetically-driven inter-individual differences in dopaminergic transmission mediate reward sensitivity and risk to smoking.


Subject(s)
Protein Serine-Threonine Kinases/genetics , Proteins/genetics , Receptors, Dopamine D2/genetics , Reward , Smoking/genetics , Smoking/psychology , Adolescent , Adolescent Behavior/physiology , Adolescent Behavior/psychology , Anticipation, Psychological/physiology , Behavior, Addictive/diagnostic imaging , Behavior, Addictive/genetics , Behavior, Addictive/physiopathology , Behavior, Addictive/psychology , Brain/diagnostic imaging , Brain/physiopathology , Cotinine/blood , Female , Genetic Association Studies , Genetic Variation , Humans , Magnetic Resonance Imaging , Male , Smoking/physiopathology
13.
Nat Commun ; 8(1): 1289, 2017 11 03.
Article in English | MEDLINE | ID: mdl-29097701

ABSTRACT

Familial growth hormone deficiency provides an opportunity to identify new genetic causes of short stature. Here we combine linkage analysis with whole-genome resequencing in patients with growth hormone deficiency and maternally inherited gingival fibromatosis. We report that patients from three unrelated families harbor either of two missense mutations, c.347G>T p.(Arg116Leu) or c.1106C>T p.(Pro369Leu), in KCNQ1, a gene previously implicated in the long QT interval syndrome. Kcnq1 is expressed in hypothalamic GHRH neurons and pituitary somatotropes. Co-expressing KCNQ1 with the KCNE2 ß-subunit shows that both KCNQ1 mutants increase current levels in patch clamp analyses and are associated with reduced pituitary hormone secretion from AtT-20 cells. In conclusion, our results reveal a role for the KCNQ1 potassium channel in the regulation of human growth, and show that growth hormone deficiency associated with maternally inherited gingival fibromatosis is an allelic disorder with cardiac arrhythmia syndromes caused by KCNQ1 mutations.


Subject(s)
Fibromatosis, Gingival/genetics , Human Growth Hormone/deficiency , KCNQ1 Potassium Channel/genetics , Mutation, Missense , Adolescent , Adrenocorticotropic Hormone/metabolism , Adult , Alleles , Amino Acid Substitution , Animals , Arrhythmias, Cardiac/genetics , Child , Child, Preschool , Female , Fibromatosis, Gingival/metabolism , Humans , KCNQ1 Potassium Channel/chemistry , KCNQ1 Potassium Channel/metabolism , Male , Maternal Inheritance/genetics , Mice , Middle Aged , Models, Molecular , Pedigree , Protein Interaction Maps , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Young Adult
14.
Development ; 144(20): 3686-3697, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28893945

ABSTRACT

The Zfp423/ZNF423 gene encodes a 30-zinc-finger transcription factor involved in key developmental pathways. Although null Zfp423 mutants develop cerebellar malformations, the underlying mechanism remains unknown. ZNF423 mutations are associated with Joubert Syndrome, a ciliopathy causing cerebellar vermis hypoplasia and ataxia. ZNF423 participates in the DNA-damage response (DDR), raising questions regarding its role as a regulator of neural progenitor cell cycle progression in cerebellar development. To characterize in vivo the function of ZFP423 in neurogenesis, we analyzed allelic murine mutants in which distinct functional domains are deleted. One deletion impairs mitotic spindle orientation, leading to premature cell cycle exit and Purkinje cell (PC) progenitor pool deletion. The other deletion impairs PC differentiation. In both mutants, cell cycle progression is remarkably delayed and DDR markers are upregulated in cerebellar ventricular zone progenitors. Our in vivo evidence sheds light on the domain-specific roles played by ZFP423 in different aspects of PC progenitor development, and at the same time strengthens the emerging notion that an impaired DDR may be a key factor in the pathogenesis of JS and other ciliopathies.


Subject(s)
Cell Cycle , DNA-Binding Proteins/physiology , Neural Stem Cells/cytology , Neurons/cytology , Purkinje Cells/cytology , Transcription Factors/physiology , Abnormalities, Multiple/genetics , Alleles , Animals , Cell Differentiation , Cell Division , Cell Proliferation , Cerebellum/abnormalities , DNA Damage , Eye Abnormalities/genetics , Gene Deletion , Kidney Diseases, Cystic/genetics , Mice , Mutation , Protein Domains , Retina/abnormalities , Spindle Apparatus/metabolism , Zinc Fingers
15.
Development ; 143(21): 3969-3981, 2016 11 01.
Article in English | MEDLINE | ID: mdl-27803058

ABSTRACT

Fertility in mammals is controlled by hypothalamic neurons that secrete gonadotropin-releasing hormone (GnRH). These neurons differentiate in the olfactory placodes during embryogenesis and migrate from the nose to the hypothalamus before birth. Information regarding this process in humans is sparse. Here, we adapted new tissue-clearing and whole-mount immunohistochemical techniques to entire human embryos/fetuses to meticulously study this system during the first trimester of gestation in the largest series of human fetuses examined to date. Combining these cutting-edge techniques with conventional immunohistochemistry, we provide the first chronological and quantitative analysis of GnRH neuron origins, differentiation and migration, as well as a 3D atlas of their distribution in the fetal brain. We reveal not only that the number of GnRH-immunoreactive neurons in humans is significantly higher than previously thought, but that GnRH cells migrate into several extrahypothalamic brain regions in addition to the hypothalamus. Their presence in these areas raises the possibility that GnRH has non-reproductive roles, creating new avenues for research on GnRH functions in cognitive, behavioral and physiological processes.


Subject(s)
Brain/embryology , Cell Differentiation , Cell Movement , Fertility/physiology , Fetus/cytology , Gonadotropin-Releasing Hormone/metabolism , Neurons/physiology , Anatomy, Artistic , Atlases as Topic , Brain/cytology , Brain/metabolism , Brain Mapping/methods , Embryo, Mammalian , Embryonic Development/physiology , Female , Fetus/embryology , Fetus/metabolism , Humans , Imaging, Three-Dimensional , Immunohistochemistry , Male , Neurons/metabolism
16.
Nat Commun ; 7: 10055, 2016 Jan 12.
Article in English | MEDLINE | ID: mdl-26753790

ABSTRACT

Anti-Müllerian hormone (AMH) plays crucial roles in sexual differentiation and gonadal functions. However, the possible extragonadal effects of AMH on the hypothalamic-pituitary-gonadal axis remain unexplored. Here we demonstrate that a significant subset of GnRH neurons both in mice and humans express the AMH receptor, and that AMH potently activates the GnRH neuron firing in mice. Combining in vivo and in vitro experiments, we show that AMH increases GnRH-dependent LH pulsatility and secretion, supporting a central action of AMH on GnRH neurons. Increased LH pulsatility is an important pathophysiological feature in many cases of polycystic ovary syndrome (PCOS), the most common cause of female infertility, in which circulating AMH levels are also often elevated. However, the origin of this dysregulation remains unknown. Our findings raise the intriguing hypothesis that AMH-dependent regulation of GnRH release could be involved in the pathophysiology of fertility and could hold therapeutic potential for treating PCOS.


Subject(s)
Anti-Mullerian Hormone/metabolism , Gonadotropin-Releasing Hormone/metabolism , Neurons/metabolism , Polycystic Ovary Syndrome/metabolism , Receptors, Peptide/metabolism , Receptors, Transforming Growth Factor beta/metabolism , Animals , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Female , Flow Cytometry , Follicle Stimulating Hormone/metabolism , Gene Knock-In Techniques , Humans , Hypothalamus/cytology , Immunohistochemistry , In Vitro Techniques , Luteinizing Hormone/metabolism , Mice , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction
17.
PLoS Biol ; 12(3): e1001808, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24618750

ABSTRACT

Neuropilin-1 (Nrp1) guides the development of the nervous and vascular systems, but its role in the mature brain remains to be explored. Here we report that the expression of the 65 kDa isoform of Sema3A, the ligand of Nrp1, by adult vascular endothelial cells, is regulated during the ovarian cycle and promotes axonal sprouting in hypothalamic neurons secreting gonadotropin-releasing hormone (GnRH), the neuropeptide controlling reproduction. Both the inhibition of Sema3A/Nrp1 signaling and the conditional deletion of Nrp1 in GnRH neurons counteract Sema3A-induced axonal sprouting. Furthermore, the localized intracerebral infusion of Nrp1- or Sema3A-neutralizing antibodies in vivo disrupts the ovarian cycle. Finally, the selective neutralization of endothelial-cell Sema3A signaling in adult Sema3aloxP/loxP mice by the intravenous injection of the recombinant TAT-Cre protein alters the amplitude of the preovulatory luteinizing hormone surge, likely by perturbing GnRH release into the hypothalamo-hypophyseal portal system. Our results identify a previously unknown function for 65 kDa Sema3A-Nrp1 signaling in the induction of axonal growth, and raise the possibility that endothelial cells actively participate in synaptic plasticity in specific functional domains of the adult central nervous system, thus controlling key physiological functions such as reproduction.


Subject(s)
Brain/metabolism , Endothelial Cells/metabolism , Fertility/physiology , Neuropilin-1/physiology , Semaphorin-3A/metabolism , Animals , Axons/metabolism , Axons/ultrastructure , Estrous Cycle/metabolism , Gonadotropin-Releasing Hormone/metabolism , Gonadotropin-Releasing Hormone/physiology , Ligands , Luteinizing Hormone/metabolism , Mice , Mice, Inbred C57BL , Neuropilin-1/metabolism , Rats , Rats, Sprague-Dawley , Semaphorin-3A/genetics , Semaphorin-3A/physiology , Signal Transduction
18.
J Neurosci ; 32(47): 16992-7002, 2012 Nov 21.
Article in English | MEDLINE | ID: mdl-23175850

ABSTRACT

Reproduction in mammals is dependent on the function of hypothalamic neurons whose axons project to the hypothalamic median eminence (ME) where they release gonadotropin-releasing hormone (GnRH) into a specialized capillary network for delivery to the anterior pituitary. These neurons originate prenatally in the nasal placode and migrate into the forebrain along the olfactory-vomeronasal nerves. The complex developmental events leading to the correct establishment of the GnRH system are tightly regulated by the specific spatiotemporal expression patterns of guidance cues and extracellular matrix molecules, the functions of which, in part, are mediated by their binding to ß1-subunit-containing integrins. To determine the biological role of these cell-surface proteins in reproduction, Cre/LoxP technology was used to generate GnRH neuron-specific ß1-integrin conditional KO (GnRH-Itgb1(-/-)) mice. Loss of ß1-integrin signaling impaired migration of GnRH neurons, their axonal extension to the ME, timing of pubertal onset, and fertility in these mice. These results identify ß1-integrin as a gene involved in normal development of the GnRH system and demonstrate a fundamental role for this protein in acquisition of normal reproductive competence in female mice.


Subject(s)
Axons/physiology , Cell Movement/physiology , Gonadotropin-Releasing Hormone/physiology , Infertility, Female/genetics , Integrin beta1/physiology , Neurons/physiology , Animals , Cell Transplantation/physiology , DNA/genetics , Estrous Cycle/drug effects , Female , Flow Cytometry , Genotype , Gonadotropin-Releasing Hormone/genetics , Image Processing, Computer-Assisted , Immunohistochemistry , Infertility, Female/physiopathology , Integrin beta1/genetics , Luteinizing Hormone/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Ovary/pathology , Polymerase Chain Reaction , Sexual Maturation/genetics , Sexual Maturation/physiology
19.
J Cell Sci ; 125(Pt 21): 5015-25, 2012 Nov 01.
Article in English | MEDLINE | ID: mdl-22976302

ABSTRACT

Stromal derived growth factor (SDF-1) and gamma-aminobutyric acid (GABA) are two extracellular cues that regulate the rate of neuronal migration during development and may act synergistically. The molecular mechanisms of this interaction are still unclear. Gonadotropin releasing hormone-1 (GnRH) neurons are essential for vertebrate reproduction. During development, these neurons emerge from the nasal placode and migrate through the cribriform plate into the brain. Both SDF-1 and GABA have been shown to regulate the rate of GnRH neuronal migration by accelerating and slowing migration, respectively. As such, this system was used to explore the mechanism by which these molecules act to produce coordinated cell movement during development. In the present study, GABA and SDF-1 are shown to exert opposite effects on the speed of cell movement by activating depolarizing or hyperpolarizing signaling pathways, GABA via changes in chloride and SDF-1 via changes in potassium. GABA and SDF-1 were also found to act synergistically to promote linear rather than random movement. The simultaneous activation of these signaling pathways, therefore, results in tight control of cellular speed and improved directionality along the migratory pathway of GnRH neurons.


Subject(s)
Axons/physiology , Cell Movement , Chemokine CXCL12/physiology , Gonadotropin-Releasing Hormone/metabolism , Neurons/physiology , gamma-Aminobutyric Acid/physiology , Animals , Female , G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism , Mice , Microscopy, Video , Olfactory Nerve/cytology , Olfactory Nerve/embryology , Receptors, CXCR4/metabolism , Signal Transduction , Tissue Culture Techniques
20.
Hum Mol Genet ; 20(24): 4759-74, 2011 Dec 15.
Article in English | MEDLINE | ID: mdl-21903667

ABSTRACT

Reproduction in mammals is dependent on the function of specific neurons that secrete gonadotropin-releasing hormone-1 (GnRH-1). These neurons originate prenatally in the nasal placode and migrate into the forebrain along the olfactory-vomeronasal nerves. Alterations in this migratory process lead to defective GnRH-1 secretion, resulting in heterogeneous genetic disorders such as idiopathic hypogonadotropic hypogonadism (IHH), and other reproductive diseases characterized by the reduction or failure of sexual competence. Combining mouse genetics with in vitro models, we demonstrate that Semaphorin 7A (Sema7A) is essential for the development of the GnRH-1 neuronal system. Loss of Sema7A signaling alters the migration of GnRH-1 neurons, resulting in significantly reduced numbers of these neurons in the adult brain as well as in reduced gonadal size and subfertility. We also show that GnRH-1 cells differentially express the Sema7 receptors ß1-integrin and Plexin C1 as a function of their migratory stage, whereas the ligand is robustly expressed along developing olfactory/vomeronasal fibers. Disruption of Sema7A function in vitro inhibits ß1-integrin-mediated migration. Analysis of Plexin C1(-/-) mice did not reveal any difference in the migratory process of GnRH-1 neurons, indicating that Sema7A mainly signals through ß1-integrin to regulate GnRH-1 cell motility. In conclusion, we have identified Sema7A as a gene implicated in the normal development of the GnRH-1 system in mice and as a genetic marker for the elucidation of some forms of GnRH-1 deficiency in humans.


Subject(s)
Antigens, CD/metabolism , Cell Movement , Fertility , Gonadotropin-Releasing Hormone/metabolism , Gonads/embryology , Integrin beta1/metabolism , Protein Precursors/metabolism , Semaphorins/metabolism , Signal Transduction , Animals , Axons/metabolism , Brain/embryology , Brain/pathology , Cell Count , Gonads/abnormalities , Gonads/metabolism , Gonads/pathology , Humans , Male , Mice , Nerve Tissue Proteins/metabolism , Neurons/metabolism , Neurons/pathology , Olfactory Bulb/embryology , Olfactory Bulb/metabolism , Receptors, Cell Surface/metabolism , Semaphorins/deficiency , Testis/embryology , Testis/metabolism , Testis/pathology , Vomeronasal Organ/embryology , Vomeronasal Organ/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...