Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
BMJ Open ; 13(9): e076881, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37770277

ABSTRACT

INTRODUCTION: Children with unilateral cerebral palsy (UCP) have difficulty in bimanual coordination that restricts the child's independence in daily activities. Although several efficacious interventions to improve bimanual coordination exist, these interventions often require higher training doses and have modest effect sizes. Thus, there is a critical need to find an effective priming agent that, when paired with task-specific training, will facilitate neurobiological processes to enhance the magnitude of training effects and subsequently improve functional capabilities of children with UCP. The aim of this study is to determine the effects of a novel priming agent, remote ischaemic conditioning (RIC), combined with bimanual training on bimanual skill learning and corticospinal excitability in children with UCP. METHODS AND ANALYSES: 46 children, aged 8-16 years, will be randomly assigned to receive RIC or sham conditioning combined with 5 days of bimanual skill (cup stacking) training (15 trials per session). RIC or sham conditioning will be performed with a standard conditioning protocol of five cycles of alternative inflation and deflation of a pressure cuff on the affected arm with the pressure of at least 20 mm Hg above systolic blood pressure for RIC and 25 mm Hg for sham conditioning. Primary outcomes will be movement time and corticospinal excitability measures determined with a single-pulse transcranial magnetic stimulation (TMS). Secondary outcomes include Assisting Hand Assessment, spatio-temporal kinematic variables and paired pulse TMS measures. All measures will be conducted before and immediately after the intervention. A mixed model analysis of variance will test the group×time interaction for all outcomes with group (RIC and sham) as between-subject and time (preintervention, postintervention) as within-subject factors. ETHICS AND DISSEMINATION: The study has been approved by the University Medical Centre Institutional Review Board (UMCIRB #21-001913). We will disseminate the study findings via peer-reviewed publications and presentations at professional conferences. TRIAL REGISTRATION NUMBER: NCT05777070.


Subject(s)
Cerebral Palsy , Child , Humans , Clinical Trials, Phase II as Topic , Hand , Learning , Randomized Controlled Trials as Topic , Transcranial Magnetic Stimulation , Upper Extremity , Adolescent
2.
bioRxiv ; 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37693419

ABSTRACT

Chronic motor impairments are a leading cause of disability after stroke. Previous studies have predicted motor outcomes based on the degree of damage to predefined structures in the motor system, such as the corticospinal tract. However, such theory-based approaches may not take full advantage of the information contained in clinical imaging data. The present study uses data-driven approaches to predict chronic motor outcomes after stroke and compares the accuracy of these predictions to previously-identified theory-based biomarkers. Using a cross-validation framework, regression models were trained using lesion masks and motor outcomes data from 789 stroke patients (293 female/496 male) from the ENIGMA Stroke Recovery Working Group (age 64.9±18.0 years; time since stroke 12.2±0.2 months; normalised motor score 0.7±0.5 (range [0,1]). The out-of-sample prediction accuracy of two theory-based biomarkers was assessed: lesion load of the corticospinal tract, and lesion load of multiple descending motor tracts. These theory-based prediction accuracies were compared to the prediction accuracy from three data-driven biomarkers: lesion load of lesion-behaviour maps, lesion load of structural networks associated with lesion-behaviour maps, and measures of regional structural disconnection. In general, data-driven biomarkers had better prediction accuracy - as measured by higher explained variance in chronic motor outcomes - than theory-based biomarkers. Data-driven models of regional structural disconnection performed the best of all models tested (R2 = 0.210, p < 0.001), performing significantly better than predictions using the theory-based biomarkers of lesion load of the corticospinal tract (R2 = 0.132, p< 0.001) and of multiple descending motor tracts (R2 = 0.180, p < 0.001). They also performed slightly, but significantly, better than other data-driven biomarkers including lesion load of lesion-behaviour maps (R2 =0.200, p < 0.001) and lesion load of structural networks associated with lesion-behaviour maps (R2 =0.167, p < 0.001). Ensemble models - combining basic demographic variables like age, sex, and time since stroke - improved prediction accuracy for theory-based and data-driven biomarkers. Finally, combining both theory-based and data-driven biomarkers with demographic variables improved predictions, and the best ensemble model achieved R2 = 0.241, p < 0.001. Overall, these results demonstrate that models that predict chronic motor outcomes using data-driven features, particularly when lesion data is represented in terms of structural disconnection, perform better than models that predict chronic motor outcomes using theory-based features from the motor system. However, combining both theory-based and data-driven models provides the best predictions.

3.
J Child Neurol ; 38(6-7): 357-366, 2023 05.
Article in English | MEDLINE | ID: mdl-37448333

ABSTRACT

Objective This study assessed the feasibility of corticomuscular coherence measurement during a goal-directed task in children with unilateral cerebral palsy while establishing optimal experimental parameters. Methods Participants (Manual Ability Classification System levels I-III) completed a submaximal isometric goal-directed grip task during simultaneous electroencephalography and electromyography (EMG) acquisition. Results All participants (n = 11, 6 females, mean age 11.3 ±2.4 years) completed corticomuscular coherence procedures. Of the 40 trials obtained per extremity, an average of 29 (n = 9) and 27 (n = 10) trials were retained from the more- and less-affected extremities, respectively. Obtaining measurement stability required an average of 28 trials per extremity. Conclusion Findings from this work support the feasibility of corticomuscular coherence measurement in children with unilateral cerebral palsy. Acquiring 28 to 40 corticomuscular coherence trials per extremity is ideal. The experimental parameters established in this work will inform future corticomuscular coherence application in pediatric unilateral cerebral palsy.


Subject(s)
Cerebral Palsy , Motor Cortex , Female , Humans , Child , Adolescent , Muscle, Skeletal , Feasibility Studies , Electromyography/methods , Electroencephalography/methods
4.
Qual Res Med Healthc ; 7(1): 10823, 2023 Apr 27.
Article in English | MEDLINE | ID: mdl-37441129

ABSTRACT

The year 2020 represents a historically turbulent period for the United States marked by the COVID-19 pandemic, a contentious political season, and heightened awareness of racism among citizens. This intersection of medicine, politics, and social unrest generated a demanding clinical environment for healthcare workers, including understudied groups such as physical therapists, occupational therapists, and speech-language pathologists. This descriptive qualitative study focused on experiences and perspectives of clinical rehabilitation therapists working in inpatient rehabilitation and acute-care units from September to November, 2020. Thirteen participants completed individual, semi-structured interviews focused on clinical practice and coping strategies. The analysis included a multi-step, inductive process. Four interconnecting factors chronicling participants' experiences emerged: sociopolitical, institutional, hospital unit, and personal. Stressors and buffers were noted that further shaped individual experiences. Utilization of an ecological framework provided a way to recognize the impact of a complex range of social and environmental factors affecting participants' experiences on personal and professional levels. Awareness of rehabilitation therapists' experiences enriches understanding of the pandemic's effect on healthcare workers and presents clinical implications for healthcare systems to promote therapist well-being.

5.
Neurology ; 100(20): e2103-e2113, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37015818

ABSTRACT

BACKGROUND AND OBJECTIVES: Functional outcomes after stroke are strongly related to focal injury measures. However, the role of global brain health is less clear. In this study, we examined the impact of brain age, a measure of neurobiological aging derived from whole-brain structural neuroimaging, on poststroke outcomes, with a focus on sensorimotor performance. We hypothesized that more lesion damage would result in older brain age, which would in turn be associated with poorer outcomes. Related, we expected that brain age would mediate the relationship between lesion damage and outcomes. Finally, we hypothesized that structural brain resilience, which we define in the context of stroke as younger brain age given matched lesion damage, would differentiate people with good vs poor outcomes. METHODS: We conducted a cross-sectional observational study using a multisite dataset of 3-dimensional brain structural MRIs and clinical measures from the ENIGMA Stroke Recovery. Brain age was calculated from 77 neuroanatomical features using a ridge regression model trained and validated on 4,314 healthy controls. We performed a 3-step mediation analysis with robust mixed-effects linear regression models to examine relationships between brain age, lesion damage, and stroke outcomes. We used propensity score matching and logistic regression to examine whether brain resilience predicts good vs poor outcomes in patients with matched lesion damage. RESULTS: We examined 963 patients across 38 cohorts. Greater lesion damage was associated with older brain age (ß = 0.21; 95% CI 0.04-0.38, p = 0.015), which in turn was associated with poorer outcomes, both in the sensorimotor domain (ß = -0.28; 95% CI -0.41 to -0.15, p < 0.001) and across multiple domains of function (ß = -0.14; 95% CI -0.22 to -0.06, p < 0.001). Brain age mediated 15% of the impact of lesion damage on sensorimotor performance (95% CI 3%-58%, p = 0.01). Greater brain resilience explained why people have better outcomes, given matched lesion damage (odds ratio 1.04, 95% CI 1.01-1.08, p = 0.004). DISCUSSION: We provide evidence that younger brain age is associated with superior poststroke outcomes and modifies the impact of focal damage. The inclusion of imaging-based assessments of brain age and brain resilience may improve the prediction of poststroke outcomes compared with focal injury measures alone, opening new possibilities for potential therapeutic targets.


Subject(s)
Stroke , Humans , Aged , Cross-Sectional Studies , Stroke/complications , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Neuroimaging
6.
PLoS One ; 18(4): e0283975, 2023.
Article in English | MEDLINE | ID: mdl-37023070

ABSTRACT

Aerobic exercise and action observation are two clinic-ready modes of neural priming that have the potential to enhance subsequent motor learning. Prior work using transcranial magnetic stimulation to assess priming effects have shown changes in corticospinal excitability involving intra- and interhemispheric circuitry. The objective of this study was to determine outcomes exclusive to priming- how aerobic exercise and action observation priming influence functional connectivity within a sensorimotor neural network using electroencephalography. We hypothesized that both action observation and aerobic exercise priming would alter resting-state coherence measures between dominant primary motor cortex and motor-related areas in alpha (7-12 Hz) and beta (13-30 Hz) frequency bands with effects most apparent in the high beta (20-30 Hz) band. Nine unimpaired individuals (24.8 ± 3 years) completed a repeated-measures cross-over study where they received a single five-minute bout of action observation or moderate-intensity aerobic exercise priming in random order with a one-week washout period. Serial resting-state electroencephalography recordings acquired from 0 to 30 minutes following aerobic and action observation priming revealed increased alpha and beta coherence between leads overlying dominant primary motor cortex and supplementary motor area relative to pre- and immediate post-priming timepoints. Aerobic exercise priming also resulted in enhanced high beta coherence between leads overlying dominant primary motor and parietal cortices. These findings indicate that a brief bout of aerobic- or action observation-based priming modulates functional connectivity with effects most pronounced with aerobic priming. The gradual increases in coherence observed over a 10 to 30-minute post-priming window may guide the pairing of aerobic- or action observation-based priming with subsequent training to optimize learning-related outcomes.


Subject(s)
Evoked Potentials, Motor , Exercise , Humans , Cross-Over Studies , Evoked Potentials, Motor/physiology , Exercise/physiology , Transcranial Magnetic Stimulation/methods , Motor Activity
7.
Sci Data ; 9(1): 320, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35710678

ABSTRACT

Accurate lesion segmentation is critical in stroke rehabilitation research for the quantification of lesion burden and accurate image processing. Current automated lesion segmentation methods for T1-weighted (T1w) MRIs, commonly used in stroke research, lack accuracy and reliability. Manual segmentation remains the gold standard, but it is time-consuming, subjective, and requires neuroanatomical expertise. We previously released an open-source dataset of stroke T1w MRIs and manually-segmented lesion masks (ATLAS v1.2, N = 304) to encourage the development of better algorithms. However, many methods developed with ATLAS v1.2 report low accuracy, are not publicly accessible or are improperly validated, limiting their utility to the field. Here we present ATLAS v2.0 (N = 1271), a larger dataset of T1w MRIs and manually segmented lesion masks that includes training (n = 655), test (hidden masks, n = 300), and generalizability (hidden MRIs and masks, n = 316) datasets. Algorithm development using this larger sample should lead to more robust solutions; the hidden datasets allow for unbiased performance evaluation via segmentation challenges. We anticipate that ATLAS v2.0 will lead to improved algorithms, facilitating large-scale stroke research.


Subject(s)
Brain , Stroke , Algorithms , Brain/diagnostic imaging , Brain/pathology , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Neuroimaging , Stroke/diagnostic imaging , Stroke/pathology
8.
J Am Heart Assoc ; 11(10): e025109, 2022 05 17.
Article in English | MEDLINE | ID: mdl-35574963

ABSTRACT

Background Persistent sensorimotor impairments after stroke can negatively impact quality of life. The hippocampus is vulnerable to poststroke secondary degeneration and is involved in sensorimotor behavior but has not been widely studied within the context of poststroke upper-limb sensorimotor impairment. We investigated associations between non-lesioned hippocampal volume and upper limb sensorimotor impairment in people with chronic stroke, hypothesizing that smaller ipsilesional hippocampal volumes would be associated with greater sensorimotor impairment. Methods and Results Cross-sectional T1-weighted magnetic resonance images of the brain were pooled from 357 participants with chronic stroke from 18 research cohorts of the ENIGMA (Enhancing NeuoImaging Genetics through Meta-Analysis) Stroke Recovery Working Group. Sensorimotor impairment was estimated from the FMA-UE (Fugl-Meyer Assessment of Upper Extremity). Robust mixed-effects linear models were used to test associations between poststroke sensorimotor impairment and hippocampal volumes (ipsilesional and contralesional separately; Bonferroni-corrected, P<0.025), controlling for age, sex, lesion volume, and lesioned hemisphere. In exploratory analyses, we tested for a sensorimotor impairment and sex interaction and relationships between lesion volume, sensorimotor damage, and hippocampal volume. Greater sensorimotor impairment was significantly associated with ipsilesional (P=0.005; ß=0.16) but not contralesional (P=0.96; ß=0.003) hippocampal volume, independent of lesion volume and other covariates (P=0.001; ß=0.26). Women showed progressively worsening sensorimotor impairment with smaller ipsilesional (P=0.008; ß=-0.26) and contralesional (P=0.006; ß=-0.27) hippocampal volumes compared with men. Hippocampal volume was associated with lesion size (P<0.001; ß=-0.21) and extent of sensorimotor damage (P=0.003; ß=-0.15). Conclusions The present study identifies novel associations between chronic poststroke sensorimotor impairment and ipsilesional hippocampal volume that are not caused by lesion size and may be stronger in women.


Subject(s)
Stroke Rehabilitation , Stroke , Cross-Sectional Studies , Female , Hippocampus/diagnostic imaging , Humans , Male , Quality of Life , Recovery of Function , Stroke/complications , Stroke/diagnostic imaging , Stroke Rehabilitation/methods , Upper Extremity
9.
Neurology ; 2022 May 12.
Article in English | MEDLINE | ID: mdl-35550551

ABSTRACT

BACKGROUND AND OBJECTIVES: It is difficult to predict post-stroke outcome for people with severe motor impairment, as both clinical tests and corticospinal tract (CST) microstructure may not reliably indicate severe motor impairment. Here, we test whether imaging biomarkers beyond the CST relate to severe upper limb impairment post-stroke by evaluating white matter microstructure in the corpus callosum (CC). In an international, multisite hypothesis-generating observational study we determined if: a) CST asymmetry index can differentiate between individuals with mild-moderate and severe upper limb impairment; and b) CC biomarkers relate to upper limb impairment within individuals with severe impairment post-stroke. We hypothesised that CST asymmetry index would differentiate between mild-moderate and severe impairment, but CC microstructure would relate to motor outcome for individuals with severe upper limb impairment. METHODS: Seven cohorts with individual diffusion imaging and motor impairment (Fugl Meyer-Upper Limb) data were pooled. Hand-drawn regions-of-interest were used to seed probabilistic tractography for CST (ipsilesional/contralesional) and CC (prefrontal/premotor/motor/sensory/posterior) tracts. Our main imaging measure was mean fractional anisotropy. Linear mixed-effect regression explored relationships between candidate biomarkers and motor impairment, controlling for observations nested within cohorts, as well as age, sex, time post-stroke and lesion volume. RESULTS: Data from 110 individuals (30 mild-moderate, 80 with severe motor impairment) were included. In the full sample, greater CST asymmetry index (i.e., lower fractional anisotropy in the ipsilesional hemisphere, p<.001) and larger lesion volume (p=.139) were negatively related to impairment. In the severe subgroup, CST asymmetry index was not reliably associated with impairment across models. Instead, lesion volume and CC microstructure explained impairment in the severe group beyond CST asymmetry index (p's<.010). CONCLUSIONS: Within a large cohort of individuals with severe upper limb impairment, CC microstructure related to motor outcome post-stroke. Our findings demonstrate that CST microstructure does relate to upper limb outcome across the full range of motor impairment but was not reliably associated within the severe subgroup. Therefore, CC microstructure may provide a promising biomarker for severe upper limb outcome post-stroke, which may advance our ability to predict recovery in people with severe motor impairment after stroke.

10.
Front Neurol ; 13: 823202, 2022.
Article in English | MEDLINE | ID: mdl-35280288

ABSTRACT

The International Classification of Functioning, Disability and Health framework recognizes that an individual's functioning post-stroke reflects an interaction between their health condition and contextual factors encompassing personal and environmental factors. Personal factors significantly impact rehabilitation outcomes as they determine how an individual evaluates their situation and copes with their condition in daily life. A key personal factor is self-efficacy-an individual's belief in their capacity to achieve certain outcomes. Self-efficacy influences an individual's motivational state to execute behaviors necessary for achieving desired rehabilitation outcomes. Stroke rehabilitation practice and research now acknowledge self-efficacy and motivation as critical elements in post-stroke recovery, and increasing evidence highlights their contributions to motor (re)learning. Given the informative value of neuroimaging-based biomarkers in stroke, elucidating the neurological underpinnings of self-efficacy and motivation may optimize post-stroke recovery. In this review, we examine the role of self-efficacy and motivation in stroke rehabilitation and recovery, identify potential neural substrates underlying these factors from current neuroimaging literature, and discuss how leveraging these factors and their associated neural substrates has the potential to advance the field of stroke rehabilitation.

11.
Hum Brain Mapp ; 43(1): 129-148, 2022 01.
Article in English | MEDLINE | ID: mdl-32310331

ABSTRACT

The goal of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Stroke Recovery working group is to understand brain and behavior relationships using well-powered meta- and mega-analytic approaches. ENIGMA Stroke Recovery has data from over 2,100 stroke patients collected across 39 research studies and 10 countries around the world, comprising the largest multisite retrospective stroke data collaboration to date. This article outlines the efforts taken by the ENIGMA Stroke Recovery working group to develop neuroinformatics protocols and methods to manage multisite stroke brain magnetic resonance imaging, behavioral and demographics data. Specifically, the processes for scalable data intake and preprocessing, multisite data harmonization, and large-scale stroke lesion analysis are described, and challenges unique to this type of big data collaboration in stroke research are discussed. Finally, future directions and limitations, as well as recommendations for improved data harmonization through prospective data collection and data management, are provided.


Subject(s)
Magnetic Resonance Imaging , Neuroimaging , Stroke , Humans , Multicenter Studies as Topic , Stroke/diagnostic imaging , Stroke/pathology , Stroke/physiopathology , Stroke Rehabilitation
12.
Brain ; 145(4): 1211-1228, 2022 05 24.
Article in English | MEDLINE | ID: mdl-34932786

ABSTRACT

Stroke is a leading cause of disability, with deficits encompassing multiple functional domains. The heterogeneity underlying stroke poses significant challenges in the prediction of post-stroke recovery, prompting the development of neuroimaging-based biomarkers. Structural neuroimaging measurements, particularly those reflecting corticospinal tract injury, are well-documented in the literature as potential biomarker candidates of post-stroke motor recovery. Consistent with the view of stroke as a 'circuitopathy', functional neuroimaging measures probing functional connectivity may also prove informative in post-stroke recovery. An important step in the development of biomarkers based on functional neural network connectivity is the establishment of causality between connectivity and post-stroke recovery. Current evidence predominantly involves statistical correlations between connectivity measures and post-stroke behavioural status, either cross-sectionally or serially over time. However, the advancement of functional connectivity application in stroke depends on devising experiments that infer causality. In 1965, Sir Austin Bradford Hill introduced nine viewpoints to consider when determining the causality of an association: (i) strength; (ii) consistency; (iii) specificity; (iv) temporality; (v) biological gradient; (vi) plausibility; (vii) coherence; (viii) experiment; and (ix) analogy. Collectively referred to as the Bradford Hill Criteria, these points have been widely adopted in epidemiology. In this review, we assert the value of implementing Bradford Hill's framework to stroke rehabilitation and neuroimaging. We focus on the role of neural network connectivity measurements acquired from task-oriented and resting-state functional MRI, EEG, magnetoencephalography and functional near-infrared spectroscopy in describing and predicting post-stroke behavioural status and recovery. We also identify research opportunities within each Bradford Hill tenet to shift the experimental paradigm from correlation to causation.


Subject(s)
Stroke , Causality , Functional Neuroimaging , Humans , Neuroimaging
13.
Brain Commun ; 3(4): fcab254, 2021.
Article in English | MEDLINE | ID: mdl-34805997

ABSTRACT

Up to two-thirds of stroke survivors experience persistent sensorimotor impairments. Recovery relies on the integrity of spared brain areas to compensate for damaged tissue. Deep grey matter structures play a critical role in the control and regulation of sensorimotor circuits. The goal of this work is to identify associations between volumes of spared subcortical nuclei and sensorimotor behaviour at different timepoints after stroke. We pooled high-resolution T1-weighted MRI brain scans and behavioural data in 828 individuals with unilateral stroke from 28 cohorts worldwide. Cross-sectional analyses using linear mixed-effects models related post-stroke sensorimotor behaviour to non-lesioned subcortical volumes (Bonferroni-corrected, P < 0.004). We tested subacute (≤90 days) and chronic (≥180 days) stroke subgroups separately, with exploratory analyses in early stroke (≤21 days) and across all time. Sub-analyses in chronic stroke were also performed based on class of sensorimotor deficits (impairment, activity limitations) and side of lesioned hemisphere. Worse sensorimotor behaviour was associated with a smaller ipsilesional thalamic volume in both early (n = 179; d = 0.68) and subacute (n = 274, d = 0.46) stroke. In chronic stroke (n = 404), worse sensorimotor behaviour was associated with smaller ipsilesional putamen (d = 0.52) and nucleus accumbens (d = 0.39) volumes, and a larger ipsilesional lateral ventricle (d = -0.42). Worse chronic sensorimotor impairment specifically (measured by the Fugl-Meyer Assessment; n = 256) was associated with smaller ipsilesional putamen (d = 0.72) and larger lateral ventricle (d = -0.41) volumes, while several measures of activity limitations (n = 116) showed no significant relationships. In the full cohort across all time (n = 828), sensorimotor behaviour was associated with the volumes of the ipsilesional nucleus accumbens (d = 0.23), putamen (d = 0.33), thalamus (d = 0.33) and lateral ventricle (d = -0.23). We demonstrate significant relationships between post-stroke sensorimotor behaviour and reduced volumes of deep grey matter structures that were spared by stroke, which differ by time and class of sensorimotor measure. These findings provide additional insight into how different cortico-thalamo-striatal circuits support post-stroke sensorimotor outcomes.

14.
Hum Brain Mapp ; 42(17): 5636-5647, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34435705

ABSTRACT

Neural oscillations may contain important information pertaining to stroke rehabilitation. This study examined the predictive performance of electroencephalography-derived neural oscillations following stroke using a data-driven approach. Individuals with stroke admitted to an inpatient rehabilitation facility completed a resting-state electroencephalography recording and structural neuroimaging around the time of admission and motor testing at admission and discharge. Using a lasso regression model with cross-validation, we determined the extent of motor recovery (admission to discharge change in Functional Independence Measurement motor subscale score) prediction from electroencephalography, baseline motor status, and corticospinal tract injury. In 27 participants, coherence in a 1-30 Hz band between leads overlying ipsilesional primary motor cortex and 16 leads over bilateral hemispheres predicted 61.8% of the variance in motor recovery. High beta (20-30 Hz) and alpha (8-12 Hz) frequencies contributed most to the model demonstrating both positive and negative associations with motor recovery, including high beta leads in supplementary motor areas and ipsilesional ventral premotor and parietal regions and alpha leads overlying contralesional temporal-parietal and ipsilesional parietal regions. Electroencephalography power, baseline motor status, and corticospinal tract injury did not significantly predict motor recovery during hospitalization (R2  = 0-6.2%). Findings underscore the relevance of oscillatory synchronization in early stroke rehabilitation while highlighting contributions from beta and alpha frequency bands and frontal, parietal, and temporal-parietal regions overlooked by traditional hypothesis-driven prediction models.


Subject(s)
Brain Waves/physiology , Electroencephalography , Motor Cortex/physiopathology , Recovery of Function/physiology , Stroke/physiopathology , Adult , Aged , Biomarkers , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged
15.
Neurology ; 96(14): e1812-e1822, 2021 04 06.
Article in English | MEDLINE | ID: mdl-33589538

ABSTRACT

OBJECTIVE: To evaluate the effect of intensive rehabilitation on the modified Rankin Scale (mRS), a measure of activities limitation commonly used in acute stroke studies, and to define the specific changes in body structure/function (motor impairment) most related to mRS gains. METHODS: Patients were enrolled >90 days poststroke. Each was evaluated before and 30 days after a 6-week course of daily rehabilitation targeting the arm. Activity gains, measured using the mRS, were examined and compared to body structure/function gains, measured using the Fugl-Meyer (FM) motor scale. Additional analyses examined whether activity gains were more strongly related to specific body structure/function gains. RESULTS: At baseline (160 ± 48 days poststroke), patients (n = 77) had median mRS score of 3 (interquartile range, 2-3), decreasing to 2 [2-3] 30 days posttherapy (p < 0.0001). Similarly, the proportion of patients with mRS score ≤2 increased from 46.8% at baseline to 66.2% at 30 days posttherapy (p = 0.015). These findings were accounted for by the mRS score decreasing in 24 (31.2%) patients. Patients with a treatment-related mRS score improvement, compared to those without, had similar overall motor gains (change in total FM score, p = 0.63). In exploratory analysis, improvement in several specific motor impairments, such as finger flexion and wrist circumduction, was significantly associated with higher likelihood of mRS decrease. CONCLUSIONS: Intensive arm motor therapy is associated with improved mRS in a substantial fraction (31.2%) of patients. Exploratory analysis suggests specific motor impairments that might underlie this finding and may be optimal targets for rehabilitation therapies that aim to reduce activities limitations. CLINICAL TRIAL: Clinicaltrials.gov identifier: NCT02360488. CLASSIFICATION OF EVIDENCE: This study provides Class III evidence that for patients >90 days poststroke with persistent arm motor deficits, intensive arm motor therapy improved mRS in a substantial fraction (31.2%) of patients.


Subject(s)
Recovery of Function , Stroke Rehabilitation/methods , Stroke , Aged , Arm , Female , Humans , Male , Middle Aged
16.
Comput Brain Behav ; 4(3): 264-283, 2021 Sep.
Article in English | MEDLINE | ID: mdl-35252759

ABSTRACT

Decision-making in two-alternative forced choice tasks has several underlying components including stimulus encoding, perceptual categorization, response selection, and response execution. Sequential sampling models of decision-making are based on an evidence accumulation process to a decision boundary. Animal and human studies have focused on perceptual categorization and provide evidence linking brain signals in parietal cortex to the evidence accumulation process. In this exploratory study, we use a task where the dominant contribution to response time is response selection and model the response time data with the drift-diffusion model. EEG measurement during the task show that the Readiness Potential (RP) recorded over motor areas has timing consistent with the evidence accumulation process. The duration of the RP predicts decision-making time, the duration of evidence accumulation, suggesting that the RP partly reflects an evidence accumulation process for response selection in the motor system. Thus, evidence accumulation may be a neural implementation of decision-making processes in both perceptual and motor systems. The contributions of perceptual categorization and response selection to evidence accumulation processes in decision-making tasks can be potentially evaluated by examining the timing of perceptual and motor EEG signals.

17.
Stroke ; 51(5): 1442-1450, 2020 05.
Article in English | MEDLINE | ID: mdl-32299324

ABSTRACT

Background and Purpose- Low-frequency oscillations reflect brain injury but also contribute to normal behaviors. We examined hypotheses relating electroencephalography measures, including low-frequency oscillations, to injury and motor recovery poststroke. Methods- Patients with stroke completed structural neuroimaging, a resting-state electroencephalography recording and clinical testing. A subset admitted to an inpatient rehabilitation facility also underwent serial electroencephalography recordings. The relationship that electroencephalography measures (power and coherence with leads overlying ipsilesional primary motor cortex [iM1]) had with injury and motor status was assessed, focusing on delta (1-3 Hz) and high-beta (20-30 Hz) bands. Results- Across all patients (n=62), larger infarct volume was related to higher delta band power in bilateral hemispheres and to higher delta band coherence between iM1 and bilateral regions. In chronic stroke, higher delta power bilaterally correlated with better motor status. In subacute stroke, higher delta coherence between iM1 and bilateral areas correlated with poorer motor status. These coherence findings were confirmed in serial recordings from 18 patients in an inpatient rehabilitation facility. Here, interhemispheric coherence between leads overlying iM1 and contralesional M1 was elevated at inpatient rehabilitation facility admission compared with healthy controls (n=22), declining to control levels over time. Decreases in interhemispheric coherence between iM1 and contralesional M1 correlated with better motor recovery. Conclusions- Delta band coherence with iM1 related to greater injury and poorer motor status subacutely, while delta band power related to greater injury and better motor status chronically. Low-frequency oscillations reflect both injury and recovery after stroke and may be useful biomarkers in stroke recovery and rehabilitation.


Subject(s)
Physical Therapy Modalities , Recovery of Function/physiology , Stroke Rehabilitation , Stroke/surgery , Adult , Aged , Female , Functional Laterality/physiology , Humans , Male , Middle Aged , Neuronal Plasticity/physiology , Stroke/physiopathology , Stroke Rehabilitation/methods , Transcranial Magnetic Stimulation/methods
18.
Netw Neurosci ; 4(4): 1197-1218, 2020.
Article in English | MEDLINE | ID: mdl-33409436

ABSTRACT

The relationship between structural and functional connectivity has been mostly examined in intact brains. Fewer studies have examined how differences in structure as a result of injury alters function. In this study we analyzed the relationship of structure to function across patients with stroke among whom infarcts caused heterogenous structural damage. We estimated relationships between distinct brain regions of interest (ROIs) from functional MRI in two pipelines. In one analysis pipeline, we measured functional connectivity by using correlation and partial correlation between 114 cortical ROIs. We found fMRI-BOLD partial correlation was altered at more edges as a function of the structural connectome (SC) damage, relative to the correlation. In a second analysis pipeline, we limited our analysis to fMRI correlations between pairs of voxels for which we possess SC information. We found that voxel-level functional connectivity showed the effect of structural damage that we could not see when examining correlations between ROIs. Further, the effects of structural damage on functional connectivity are consistent with a model of functional connectivity, diffusion, which expects functional connectivity to result from activity spreading over multiple edge anatomical paths.

19.
Stroke ; 50(12): 3569-3577, 2019 12.
Article in English | MEDLINE | ID: mdl-31648631

ABSTRACT

Background and Purpose- Injury to the corticospinal tract (CST) has been shown to have a major effect on upper extremity motor recovery after stroke. This study aimed to examine how well CST injury, measured from neuroimaging acquired during the acute stroke workup, predicts upper extremity motor recovery. Methods- Patients with upper extremity weakness after ischemic stroke were assessed using the upper extremity Fugl-Meyer during the acute stroke hospitalization and again at 3-month follow-up. CST injury was quantified and compared, using 4 different methods, from images obtained as part of the stroke standard-of-care workup. Logistic and linear regression were performed using CST injury to predict ΔFugl-Meyer. Injury to primary motor and premotor cortices were included as potential modifiers of the effect of CST injury on recovery. Results- N=48 patients were enrolled 4.2±2.7 days poststroke and completed 3-month follow-up (median 90-day modified Rankin Scale score, 3; interquartile range, 1.5). CST injury distinguished patients who reached their recovery potential (as predicted from initial impairment) from those who did not, with area under the curve values ranging from 0.70 to 0.8. In addition, CST injury explained ≈20% of the variance in the magnitude of upper extremity recovery, even after controlling for the severity of initial impairment. Results were consistent when comparing 4 different methods of measuring CST injury. Extent of injury to primary motor and premotor cortices did not significantly influence the predictive value that CST injury had for recovery. Conclusions- Structural injury to the CST, as estimated from standard-of-care imaging available during the acute stroke hospitalization, is a robust way to distinguish patients who achieve their predicted recovery potential and explains a significant amount of the variance in poststroke upper extremity motor recovery.


Subject(s)
Motor Cortex/diagnostic imaging , Pyramidal Tracts/diagnostic imaging , Recovery of Function , Stroke/diagnostic imaging , Aged , Diffusion Magnetic Resonance Imaging , Female , Humans , Linear Models , Logistic Models , Male , Middle Aged , Motor Cortex/pathology , Pyramidal Tracts/pathology , Stroke/physiopathology , Upper Extremity/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...