Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neurobiol Stress ; 30: 100635, 2024 May.
Article in English | MEDLINE | ID: mdl-38645599

ABSTRACT

Rodents are sensitive to the emotional state of conspecifics. While the presence of affiliative social partners mitigates the physiological response to stressors (buffering), the partners of stressed individuals show behavioral and endocrine changes indicating that stress parameters can be transmitted across the group members (contagion). In this study, we investigated the social contagion/buffering phenomena in behavior and neuroendocrine mechanisms after exposure to chronic stress, in groups of rats living in the PhenoWorld (PhW). Three groups were tested (8 stressed rats, 8 unstressed rats, and a mixed group with 4 and 4) and these were analyzed under 4 conditions: stressed (pure stress group, n = 8), unstressed (naive control group, n = 8), stressed from mixed group (stressed companion group, n = 8), unstressed from mixed group (unstressed companion group, n = 8. While naive control animals remained undisturbed, pure stress group animals were all exposed to stress. Half of the animals under the mixed-treatment condition were exposed to stress (stressed companion group) and cohabitated with their unstressed partners (unstressed companion group). We confirmed the well-established chronic unpredictable stress (CUS) effects in physiological, behavioral, and neuroendocrine endpoints; body weight gain, open arm entries and time in EPM, and oxytocin receptor expression levels in the amygdala decreased by stress exposure, whereas adrenal weight was increased by stress. Furthermore, we found that playing, rearing and solitary resting behaviors decreased, whereas huddling behavior increased by CUS. In addition, we detected significant increases (stress-buffering) in body weight gain and huddling behaviors between pure stress and stress companion animals, and significant stress contagion effects in emotional behavior and oxytocin receptor expression levels between naive control and control companion groups. Hence, we demonstrate buffering and contagion effects were evident in physiological parameters, emotional behaviors, and social home-cage behaviors of rats and we suggest a possible mediation of these effects by oxytocin neurotransmission. In conclusion, the results herein suggest that the stress status of animals living in the same housing environment influences the behavior of the group.

2.
Front Behav Neurosci ; 16: 999325, 2022.
Article in English | MEDLINE | ID: mdl-36311866

ABSTRACT

Access to vital needs shapes social orders. In rats, social systems tend to maintain a certain stability, but alterations in the physical environment can change inter-individual relations, which consequently can alter social orders. Principles governing social systems are, however, difficult to study and most analyses have been restricted to dyads of animals over short periods of time, hardly capturing the complexity and temporal dynamics of social interactions. Herein, we studied social interactions in a colony of six rats living in a customized enriched environment (PhenoWorld, PhW), under variable conditions of access/availability to limited resources. Reductions in food accessibility and availability resulted in a marked heterogeneity in sniffing, chasing and fighting/struggling behaviors, and, in the latter condition, an overall increase of these displays. The introduction of the possibility of interaction with a female rat also increased the amount of sniffing and fighting/struggling in a homogeneous manner. Results also showed that individual food retrieval success had no association with fighting/struggling when food pellets are delivered to the animals. However, there was a statistically significant correlation between fighting/struggling and impulsivity as measured by the amount of premature responses in the Variable-to-Signal-Test outside of the PhW providing external validation to our measures. To sum up, through continuous monitoring of a group of rats in the PhW, we demonstrated how variations in access to reinforcers modulate social behavior.

3.
Front Behav Neurosci ; 15: 811987, 2021.
Article in English | MEDLINE | ID: mdl-35069144

ABSTRACT

The evolution of the field of behavioral neuroscience is significantly dependent on innovative disruption triggered by our ability to model and phenotype animal models of neuropsychiatric disorders. The ability to adequately elicit and measure behavioral parameters are the fundaments on which the behavioral neuroscience community establishes the pathophysiological mechanisms of neuropsychiatric disorders as well as contributes to the development of treatment strategies for those conditions. Herein, we review how mood disorders, in particular depression, are currently modeled in rodents, focusing on the limitations of these models and particularly on the analyses of the data obtained with different behavioral tests. Finally, we propose the use of new paradigms to study behavior using multidimensional strategies that better encompasses the complexity of psychiatric conditions, namely depression; these paradigms provide holistic phenotyping that is applicable to other conditions, thus promoting the emergence of novel findings that will leverage this field.

4.
Lab Anim ; 51(1): 36-43, 2017 Feb.
Article in English | MEDLINE | ID: mdl-26985009

ABSTRACT

The use of animals is essential in biomedical research. The laboratory environment where the animals are housed has a major impact on them throughout their lives and influences the outcome of animal experiments. Therefore, there has been an increased effort in the refinement of laboratory housing conditions which is explicitly reflected in international regulations and recommendations. Since housing conditions affect behaviour and brain function as well as well-being, the validation of an animal model or paradigm to study the brain and central nervous system disorders is not complete without an evaluation of its implication on animal welfare. Here we discuss several aspects of animal welfare, comparing groups of six rats living in the PhenoWorld (PhW), a recently developed and validated paradigm for studying rodent behaviour, with standard-housed animals (in cages of six rats or pair-housed). In this study we present new data on home-cage behaviour showing that PhW animals have a clearer circadian pattern of sleep and social interaction. We conclude that, by promoting good basic health and functioning, together with the performance of natural behaviours, and maintaining animals' control over some of their environment but still keeping some physical and social challenges, the PhW stimulates positive affective states and higher motivation in rats, which might contribute to an increased welfare for animals living in the PhW.


Subject(s)
Animal Welfare/standards , Housing, Animal/standards , Rats/physiology , Sleep , Social Behavior , Animals , Male , Rats, Wistar , Specific Pathogen-Free Organisms
SELECTION OF CITATIONS
SEARCH DETAIL
...