Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Nutr ; 11(5): 1300-1314, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32383739

ABSTRACT

Despite almost 25 y of fish oil supplementation (FS) research in athletes and widespread use by the athletic community, no systematic reviews of FS in athletes have been conducted. The objectives of this systematic review are to: 1) provide a summary of the effect of FS on the athlete's physiology, health, and performance; 2) report on the quality of the evidence; 3) document any side effects as reported in the athlete research; 4) discuss any risks associated with FS use; and 5) provide guidance for FS use and highlight gaps for future research. Electronic databases (PubMed, Embase, Web of Science, Google Scholar) were searched up until April 2019. Only randomized placebo-controlled trials (RCTs) in athletes, assessing the effect of FS on a health, physiological/biochemical, or performance variable were included. Of the 137 papers identified through searches, 32 met inclusion criteria for final analysis. Athletes varied in classification from recreational to elite, and from Olympic to professional sports. Mean age for participants was 24.9 ± 4.5 y, with 70% of RCTs in males. We report consistent effects for FS on reaction time, mood, cardiovascular dynamics in cyclists, skeletal muscle recovery, the proinflammatory cytokine TNF-α, and postexercise NO responses. No clear effects on endurance performance, lung function, muscle force, or training adaptation were evident. Methodological quality, applying the Physiotherapy Evidence Database (PEDro) scale, ranged from 6 to a maximum of 11, with only 4 RCTs reporting effect sizes. Few negative outcomes were reported. We report various effects for FS on the athlete's physiology; the most consistent findings were on the central nervous system, cardiovascular system, proinflammatory cytokines, and skeletal muscle. We provide recommendations for future research and discuss the potential risks with FS use.


Subject(s)
Dietary Supplements , Fish Oils , Athletes , Humans , Male , Muscle, Skeletal
2.
Int J Sport Nutr Exerc Metab ; 29(2): 181-188, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30507260

ABSTRACT

The main focus of this review is illness among elite athletes, how and why it occurs, and whether any measures can be taken to combat it or to prevent its onset. In particular, there is particular interest in exercise-induced immunodepression, which is a result of the immune system regarding exercise (e.g., prolonged, exhaustive exercise) as a challenge to its function. This promotes the inflammatory response. There is often a high incidence of illness in athletes after undertaking strenuous exercise, particularly among those competing in endurance events, not only mainly in terms of upper respiratory tract illness, but also involving gastrointestinal problems. It may well be that this high incidence is largely due to insufficient recovery time being allowed after, for example, a marathon, a triathlon, or other endurance events. Two examples of the incidence of upper respiratory tract illness in moderate versus endurance exercise are provided. In recent years, increasing numbers of research studies have investigated the origins, symptoms, and incidence of these bouts of illness and have attempted to alleviate the symptoms with supplements, sports foods, or immunonutrition. One aspect of the present review discusses iron deficiency, which has been primarily suggested to have an impact upon cell-mediated immunity. Immunonutrition is also discussed, as are new techniques for investigating links between metabolism and immune function.


Subject(s)
Exercise , Immune System , Inflammation/etiology , Iron/administration & dosage , Nutritional Requirements , Sports Nutritional Physiological Phenomena/immunology , Gastrointestinal Diseases/etiology , Gastrointestinal Diseases/prevention & control , Humans , Immune Tolerance , Immunity, Cellular , Inflammation/prevention & control , Iron Deficiencies , Physical Endurance
3.
Exerc Immunol Rev ; 23: 8-50, 2017.
Article in English | MEDLINE | ID: mdl-28224969

ABSTRACT

In this consensus statement on immunonutrition and exercise, a panel of knowledgeable contributors from across the globe provides a consensus of updated science, including the background, the aspects for which a consensus actually exists, the controversies and, when possible, suggested directions for future research.


Subject(s)
Exercise , Immune System/physiology , Sports Nutritional Physiological Phenomena , Amino Acids/immunology , Biomarkers , Dietary Carbohydrates/immunology , Fatty Acids/immunology , Humans , Inflammation/immunology , Nutritional Requirements
4.
Sports Med Open ; 2: 30, 2015 Jun.
Article in English | MEDLINE | ID: mdl-27547716

ABSTRACT

BACKGROUND: Growth hormone (GH) has many direct and indirect actions and roles including substrate regulation and priming of some cells of the immune system, and the expected aspects of growth and repair. Different concentrations in human body fluids reflect the exercise-induced growth hormone response (EIGR) after exercise. In populations such as elite athletes, the invasive nature of venous sampling is poorly accepted. Thus, this study examines possible viable alternatives such as urine and saliva samples and the GH concentration. METHODS: A heterogeneous group of 11 males (age 26.0 ± 5.0 years; body mass 76.5 ± 9.3 kg; VO2peak 57.0 ± 6.0 mL kg-1 min-1) ran for 40 min on a treadmill at 5 % below their individually indentified lactate threshold pace. Samples of urine, saliva and blood were collected immediately pre- and post-test and at 30 and 60 min post-test. RESULTS: Salivary GH was correlated with serum pre- and post-exercise (p < 0.001); urinary GH was correlated with serum (p < 0.05). However, despite being significantly correlated, it is clear from the large differences in absolute concentration in the three media that the appearance of serum GH due to exercise is different from that of the appearance of salivary and urinary GH. This aspect of compartmental exchanges is very difficult to define and to investigate. Differences in any analyte concentration in different compartments are to be expected between different media, and hence the same medium should be used where the same 'pattern of response' can be tracked. CONCLUSIONS: The results suggest that urinary and saliva sampling cannot substitute for venous sampling with respect to exercise-induced changes in GH concentration. The use of the analyses in these three areas may be appropriate for further investigation.

SELECTION OF CITATIONS
SEARCH DETAIL
...