Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nat Protoc ; 18(11): 3413-3459, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37735235

ABSTRACT

Over the past 5 years, our laboratory has systematically developed a structure-guided library approach to evolve new adeno-associated virus (AAV) capsids with altered tissue tropism, higher transduction efficiency and the ability to evade pre-existing humoral immunity. Here, we provide a detailed protocol describing two distinct evolution strategies using structurally divergent AAV serotypes as templates, exemplified by improving CNS gene transfer efficiency in vivo. We outline four major components of our strategy: (i) structure-guided design of AAV capsid libraries, (ii) AAV library production, (iii) library cycling in single versus multiple animal models, followed by (iv) evaluation of lead AAV vector candidates in vivo. The protocol spans ~95 d, excluding gene expression analysis in vivo, and can vary depending on user experience, resources and experimental design. A distinguishing attribute of the current protocol is the focus on providing biomedical researchers with 3D structural information to guide evolution of precise 'hotspots' on AAV capsids. Furthermore, the protocol outlines two distinct methods for AAV library evolution consisting of adenovirus-enabled infectious cycling in a single species and noninfectious cycling in a cross-species manner. Notably, our workflow can be seamlessly merged with other RNA transcript-based library strategies and tailored for tissue-specific capsid selection. Overall, the procedures outlined herein can be adapted to expand the AAV vector toolkit for genetic manipulation of animal models and development of human gene therapies.


Subject(s)
Capsid , Dependovirus , Animals , Humans , Capsid/chemistry , Dependovirus/genetics , Genetic Therapy/methods , Gene Transfer Techniques , Capsid Proteins/genetics , Genetic Vectors , Transduction, Genetic
2.
Nat Commun ; 13(1): 5947, 2022 10 10.
Article in English | MEDLINE | ID: mdl-36210364

ABSTRACT

Recombinant adeno-associated viral (AAV) vectors are a promising gene delivery platform, but ongoing clinical trials continue to highlight a relatively narrow therapeutic window. Effective clinical translation is confounded, at least in part, by differences in AAV biology across animal species. Here, we tackle this challenge by sequentially evolving AAV capsid libraries in mice, pigs and macaques. We discover a highly potent, cross-species compatible variant (AAV.cc47) that shows improved attributes benchmarked against AAV serotype 9 as evidenced by robust reporter and therapeutic gene expression, Cre recombination and CRISPR genome editing in normal and diseased mouse models. Enhanced transduction efficiency of AAV.cc47 vectors is further corroborated in macaques and pigs, providing a strong rationale for potential clinical translation into human gene therapies. We envision that ccAAV vectors may not only improve predictive modeling in preclinical studies, but also clinical translatability by broadening the therapeutic window of AAV based gene therapies.


Subject(s)
Dependovirus , Gene Editing , Animals , Dependovirus/metabolism , Genetic Therapy , Genetic Vectors/genetics , Humans , Macaca/genetics , Mice , Swine , Transduction, Genetic
3.
Nat Med ; 25(3): 427-432, 2019 03.
Article in English | MEDLINE | ID: mdl-30778238

ABSTRACT

Duchenne muscular dystrophy (DMD) is a monogenic disorder and a candidate for therapeutic genome editing. There have been several recent reports of genome editing in preclinical models of Duchenne muscular dystrophy1-6, however, the long-term persistence and safety of these genome editing approaches have not been addressed. Here we show that genome editing and dystrophin protein restoration is sustained in the mdx mouse model of Duchenne muscular dystrophy for 1 year after a single intravenous administration of an adeno-associated virus that encodes CRISPR (AAV-CRISPR). We also show that AAV-CRISPR is immunogenic when administered to adult mice7; however, humoral and cellular immune responses can be avoided by treating neonatal mice. Additionally, we describe unintended genome and transcript alterations induced by AAV-CRISPR that should be considered for the development of AAV-CRISPR as a therapeutic approach. This study shows the potential of AAV-CRISPR for permanent genome corrections and highlights aspects of host response and alternative genome editing outcomes that require further study.


Subject(s)
CRISPR-Cas Systems/genetics , Gene Editing/methods , Muscular Dystrophy, Duchenne/therapy , Animals , Animals, Newborn , CRISPR-Cas Systems/immunology , Dependovirus , Disease Models, Animal , Dystrophin/genetics , Genetic Therapy/methods , Genetic Vectors , Immunity, Cellular/immunology , Immunity, Humoral/immunology , Mice , Mice, Inbred mdx , Muscular Dystrophy, Duchenne/genetics
4.
Elife ; 72018 12 18.
Article in English | MEDLINE | ID: mdl-30561329

ABSTRACT

The glymphatic system is a brain-wide clearance pathway; its impairment contributes to the accumulation of amyloid-ß. Influx of cerebrospinal fluid (CSF) depends upon the expression and perivascular localization of the astroglial water channel aquaporin-4 (AQP4). Prompted by a recent failure to find an effect of Aqp4 knock-out (KO) on CSF and interstitial fluid (ISF) tracer transport, five groups re-examined the importance of AQP4 in glymphatic transport. We concur that CSF influx is higher in wild-type mice than in four different Aqp4 KO lines and in one line that lacks perivascular AQP4 (Snta1 KO). Meta-analysis of all studies demonstrated a significant decrease in tracer transport in KO mice and rats compared to controls. Meta-regression indicated that anesthesia, age, and tracer delivery explain the opposing results. We also report that intrastriatal injections suppress glymphatic function. This validates the role of AQP4 and shows that glymphatic studies must avoid the use of invasive procedures.


Subject(s)
Aquaporin 4/metabolism , Astrocytes/metabolism , Brain/metabolism , Glymphatic System , Animals , Aquaporin 4/genetics , Biological Transport , Cerebrospinal Fluid/metabolism , Extracellular Fluid/metabolism , Mice, Knockout , Rats
5.
Mol Ther Nucleic Acids ; 13: 89-98, 2018 Dec 07.
Article in English | MEDLINE | ID: mdl-30245471

ABSTRACT

Circular RNAs (circRNAs) are long-lived, covalently closed RNAs that are abundantly expressed and evolutionarily conserved across eukaryotes. Possible functions ranging from microRNA (miRNA) and RNA binding protein sponges to regulators of transcription and translation have been proposed. Here we describe the design and characterization of recombinant adeno-associated viral (AAV) vectors packaging transgene cassettes containing intronic sequences that promote backsplicing to generate circularized RNA transcripts. Using a split GFP transgene, we demonstrate the capacity of vectors containing different flanking intronic sequences to efficiently drive persistent circRNA formation in vitro. Further, translation from circRNA is efficiently driven by an internal ribosomal entry site (IRES). Upon injecting AAV vectors encoding circRNA in mice, we observed robust transgene expression in the heart, but low transduction in the liver for the intronic elements tested. Expression in the murine brain was restricted to astrocytes following systemic or intracranial administration, while intravitreal injection in the eye yielded robust transgene expression across multiple retinal cell layers. These results highlight the potential for exploiting AAV-based circRNA expression to study circRNA function and tissue-specific regulation in animal models, as well as development of therapeutic platforms using this approach.

6.
Mol Ther ; 26(2): 510-523, 2018 02 07.
Article in English | MEDLINE | ID: mdl-29175157

ABSTRACT

Effective gene delivery to the CNS by intravenously administered adeno-associated virus (AAV) vectors requires crossing the blood-brain barrier (BBB). To achieve therapeutic CNS transgene expression, high systemic vector doses are often required, which poses challenges such as scale-up costs and dose-dependent hepatotoxicity. To improve the specificity and efficiency of CNS gene transfer, a better understanding of the structural features that enable AAV transit across the BBB is needed. We generated a combinatorial domain swap library using AAV1, a serotype that does not traverse the vasculature, and AAVrh.10, which crosses the BBB in mice. We then screened individual variants by phylogenetic and structural analyses and subsequently conducted systemic characterization in mice. Using this approach, we identified key clusters of residues on the AAVrh.10 capsid that enabled transport across the brain vasculature and widespread neuronal transduction in mice. Through rational design, we mapped a minimal footprint from AAVrh.10, which, when grafted onto AAV1, confers the aforementioned CNS phenotype while diminishing vascular and hepatic transduction through an unknown mechanism. Functional mapping of this capsid surface footprint provides a roadmap for engineering synthetic AAV capsids for efficient CNS gene transfer with an improved safety profile.


Subject(s)
Blood-Brain Barrier/metabolism , Blood-Brain Barrier/virology , Dependovirus/physiology , Dependovirus/ultrastructure , Animals , Biological Transport , Brain/metabolism , Capsid Proteins/chemistry , Capsid Proteins/genetics , Dependovirus/classification , Gene Expression , Gene Transfer Techniques , Genetic Engineering , Genetic Vectors/administration & dosage , Humans , Mice , Models, Molecular , Myocardium/metabolism , Organ Specificity , Phylogeny , Protein Binding , Tissue Distribution , Transduction, Genetic , Transgenes
7.
Proc Natl Acad Sci U S A ; 114(24): E4812-E4821, 2017 06 13.
Article in English | MEDLINE | ID: mdl-28559317

ABSTRACT

Preexisting neutralizing antibodies (NAbs) against adeno-associated viruses (AAVs) pose a major, unresolved challenge that restricts patient enrollment in gene therapy clinical trials using recombinant AAV vectors. Structural studies suggest that despite a high degree of sequence variability, antibody recognition sites or antigenic hotspots on AAVs and other related parvoviruses might be evolutionarily conserved. To test this hypothesis, we developed a structure-guided evolution approach that does not require selective pressure exerted by NAbs. This strategy yielded highly divergent antigenic footprints that do not exist in natural AAV isolates. Specifically, synthetic variants obtained by evolving murine antigenic epitopes on an AAV serotype 1 capsid template can evade NAbs without compromising titer, transduction efficiency, or tissue tropism. One lead AAV variant generated by combining multiple evolved antigenic sites effectively evades polyclonal anti-AAV1 neutralizing sera from immunized mice and rhesus macaques. Furthermore, this variant displays robust immune evasion in nonhuman primate and human serum samples at dilution factors as high as 1:5, currently mandated by several clinical trials. Our results provide evidence that antibody recognition of AAV capsids is conserved across species. This approach can be applied to any AAV strain to evade NAbs in prospective patients for human gene therapy.


Subject(s)
Dependovirus/genetics , Dependovirus/immunology , Directed Molecular Evolution/methods , Immune Evasion/genetics , Amino Acid Sequence , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antigen-Antibody Complex/chemistry , Antigen-Antibody Complex/genetics , Antigen-Antibody Complex/immunology , Antigenic Variation/genetics , Antigens, Viral/chemistry , Antigens, Viral/genetics , Antigens, Viral/immunology , Capsid Proteins/genetics , Capsid Proteins/immunology , Dependovirus/classification , Female , Genetic Therapy/adverse effects , Genetic Therapy/methods , Genetic Vectors , HEK293 Cells , Humans , Macaca mulatta , Mice , Mice, Inbred BALB C , Models, Molecular , Serotyping
8.
Science ; 351(6271): 403-7, 2016 Jan 22.
Article in English | MEDLINE | ID: mdl-26721684

ABSTRACT

Duchenne muscular dystrophy (DMD) is a devastating disease affecting about 1 out of 5000 male births and caused by mutations in the dystrophin gene. Genome editing has the potential to restore expression of a modified dystrophin gene from the native locus to modulate disease progression. In this study, adeno-associated virus was used to deliver the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 system to the mdx mouse model of DMD to remove the mutated exon 23 from the dystrophin gene. This includes local and systemic delivery to adult mice and systemic delivery to neonatal mice. Exon 23 deletion by CRISPR-Cas9 resulted in expression of the modified dystrophin gene, partial recovery of functional dystrophin protein in skeletal myofibers and cardiac muscle, improvement of muscle biochemistry, and significant enhancement of muscle force. This work establishes CRISPR-Cas9-based genome editing as a potential therapy to treat DMD.


Subject(s)
CRISPR-Cas Systems , Dystrophin/genetics , Exons/genetics , Genetic Therapy/methods , Muscle, Skeletal/metabolism , Muscular Dystrophy, Duchenne/therapy , Animals , Clustered Regularly Interspaced Short Palindromic Repeats , Dependovirus , Disease Models, Animal , Male , Mice , Mice, Inbred mdx , Muscular Dystrophy, Duchenne/genetics , Sequence Deletion
9.
J Biol Chem ; 290(3): 1496-504, 2015 Jan 16.
Article in English | MEDLINE | ID: mdl-25404742

ABSTRACT

Adeno-associated viruses (AAVs) display a highly conserved NGR motif on the capsid surface. Earlier studies have established this tripeptide motif as being essential for integrin-mediated uptake of recombinant AAV serotype 2 (AAV2) in cultured cells. However, functional attributes of this putative integrin recognition motif in other recombinant AAV serotypes displaying systemic transduction in vivo remain unknown. In this study, we dissect the biology of an integrin domain capsid mutant derived from the human isolate AAV9 in mice. The AAV9/NGA mutant shows decreased systemic transduction in mice. This defective phenotype was accompanied by rapid clearance of mutant virions from the blood circulation and nonspecific sequestration by the spleen. Transient vascular hyperpermeability, induced by histamine coinjection, exacerbated AAV9/NGA uptake by the spleen but not the liver. However, such treatment did not affect AAV9 virions, suggesting a potential entry/post-entry defect for the mutant in different tissues. Further characterization revealed modestly decreased cell surface binding but a more pronounced defect in the cellular entry of mutant virions. These findings were corroborated by the observation that blocking multiple integrins adversely affected recombinant AAV9 transduction in different cell types, albeit with variable efficiencies. From a structural perspective, we observed that the integrin recognition motif is located in close proximity to the galactose binding footprint on AAV9 capsids and postulate that this feature could influence cell surface attachment, cellular uptake at the tissue level, and systemic clearance by the reticuloendothelial system.


Subject(s)
Capsid/metabolism , Dependovirus/physiology , Integrins/chemistry , Virus Attachment , Amino Acid Motifs , Animals , Binding, Competitive , CHO Cells , Cricetinae , Cricetulus , Dependovirus/genetics , Female , HeLa Cells , Humans , Mice , Mice, Inbred BALB C , Models, Molecular , Mutation , Phenotype , Polysaccharides/chemistry , Protein Binding , Viral Proteins/metabolism , Virion/physiology
10.
J Am Soc Nephrol ; 26(1): 67-80, 2015 Jan.
Article in English | MEDLINE | ID: mdl-24904090

ABSTRACT

Recombination signal binding protein for Ig-κJ region (RBP-J), the major downstream effector of Notch signaling, is necessary to maintain the number of renin-positive juxtaglomerular cells and the plasticity of arteriolar smooth muscle cells to re-express renin when homeostasis is threatened. We hypothesized that RBP-J controls a repertoire of genes that defines the phenotype of the renin cell. Mice bearing a bacterial artificial chromosome reporter with a mutated RBP-J binding site in the renin promoter had markedly reduced reporter expression at the basal state and in response to a homeostatic challenge. Mice with conditional deletion of RBP-J in renin cells had decreased expression of endocrine (renin and Akr1b7) and smooth muscle (Acta2, Myh11, Cnn1, and Smtn) genes and regulators of smooth muscle expression (miR-145, SRF, Nfatc4, and Crip1). To determine whether RBP-J deletion decreased the endowment of renin cells, we traced the fate of these cells in RBP-J conditional deletion mice. Notably, the lineage staining patterns in mutant and control kidneys were identical, although mutant kidneys had fewer or no renin-expressing cells in the juxtaglomerular apparatus. Microarray analysis of mutant arterioles revealed upregulation of genes usually expressed in hematopoietic cells. Thus, these results suggest that RBP-J maintains the identity of the renin cell by not only activating genes characteristic of the myo-endocrine phenotype but also, preventing ectopic gene expression and adoption of an aberrant phenotype, which could have severe consequences for the control of homeostasis.


Subject(s)
Gene Expression Regulation , Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , Juxtaglomerular Apparatus/metabolism , Animals , Binding Sites , Cell Communication , Cell Lineage , Cell Proliferation , Chromosomes, Artificial, Bacterial , Gene Deletion , Genes, Reporter , Hematopoietic Stem Cells/cytology , Kidney/blood supply , Kidney/metabolism , Mice , Mice, Knockout , Microcirculation , Mutation , Myocytes, Smooth Muscle/cytology , Oligonucleotide Array Sequence Analysis , Phenotype , Promoter Regions, Genetic , Renin/genetics
11.
Physiol Genomics ; 43(17): 1021-8, 2011 Sep 08.
Article in English | MEDLINE | ID: mdl-21750232

ABSTRACT

Renin-expressing cells are crucial in the control of blood pressure and fluid-electrolyte homeostasis. Notch receptors convey cell-cell signals that may regulate the renin cell phenotype. Because the common downstream effector for all Notch receptors is the transcription factor RBP-J, we used a conditional knockout approach to delete RBP-J in cells of the renin lineage. The resultant RBP-J conditional knockout (cKO) mice displayed a severe reduction in the number of renin-positive juxtaglomerular apparatuses (JGA) and a reduction in the total number of renin positive cells per JGA and along the afferent arterioles. This reduction in renin protein was accompanied by a decrease in renin mRNA expression, decreased circulating renin, and low blood pressure. To investigate whether deletion of RBP-J altered the ability of mice to increase the number of renin cells normally elicited by a physiological threat, we treated RBP-J cKO mice with captopril and sodium depletion for 10 days. The resultant treated RBP-J cKO mice had a 65% reduction in renin mRNA levels (compared with treated controls) and were unable to increase circulating renin. Although these mice attempted to increase the number of renin cells, the cells were unusually thin and had few granules and barely detectable amounts of immunoreactive renin. As a consequence, the cells were incapable of fully adopting the endocrine phenotype of a renin cell. We conclude that RBP-J is required to maintain basal renin expression and the ability of smooth muscle cells along the kidney vasculature to regain the renin phenotype, a fundamental mechanism to preserve homeostasis.


Subject(s)
Immunoglobulin J Recombination Signal Sequence-Binding Protein/metabolism , Renin/metabolism , Animals , Cells, Cultured , Genotype , Immunoglobulin J Recombination Signal Sequence-Binding Protein/genetics , Immunohistochemistry , Juxtaglomerular Apparatus/cytology , Juxtaglomerular Apparatus/metabolism , Mice , Mice, Knockout , RNA, Messenger/genetics , Renin/genetics , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/genetics , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...