Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Proc Natl Acad Sci U S A ; 121(4): e2309628121, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38227660

ABSTRACT

Human bone marrow failure (BMF) syndromes result from the loss of hematopoietic stem and progenitor cells (HSPC), and this loss has been attributed to cell death; however, the cell death triggers, and mechanisms remain unknown. During BMF, tumor necrosis factor-α (TNFα) and interferon-γ (IFNγ) increase. These ligands are known to induce necroptosis, an inflammatory form of cell death mediated by RIPK1, RIPK3, and MLKL. We previously discovered that mice with a hematopoietic RIPK1 deficiency (Ripk1HEM KO) exhibit inflammation, HSPC loss, and BMF, which is partially ameliorated by a RIPK3 deficiency; however, whether RIPK3 exerts its effects through its function in mediating necroptosis or other forms of cell death remains unclear. Here, we demonstrate that similar to a RIPK3 deficiency, an MLKL deficiency significantly extends survival and like Ripk3 deficiency partially restores hematopoiesis in Ripk1HEM KO mice revealing that both necroptosis and apoptosis contribute to BMF in these mice. Using mouse models, we show that the nucleic acid sensor Z-DNA binding protein 1 (ZBP1) is up-regulated in mouse RIPK1-deficient bone marrow cells and that ZBP1's function in endogenous nucleic acid sensing is necessary for HSPC death and contributes to BMF. We also provide evidence that IFNγ mediates HSPC death in Ripk1HEM KO mice, as ablation of IFNγ but not TNFα receptor signaling significantly extends survival of these mice. Together, these data suggest that RIPK1 maintains hematopoietic homeostasis by preventing ZBP1 activation and induction of HSPC death.


Subject(s)
Nucleic Acids , Pancytopenia , Animals , Humans , Mice , Apoptosis/genetics , Bone Marrow Failure Disorders , Cell Death/physiology , Hematopoietic Stem Cells/metabolism , Necrosis/metabolism , Nucleic Acids/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism
2.
Blood Adv ; 7(23): 7304-7318, 2023 12 12.
Article in English | MEDLINE | ID: mdl-37756546

ABSTRACT

Germ line mutations in the RUNX1 gene cause familial platelet disorder (FPD), an inherited disease associated with lifetime risk to hematopoietic malignancies (HM). Patients with FPD frequently show clonal expansion of premalignant cells preceding HM onset. Despite the extensive studies on the role of RUNX1 in hematopoiesis, its function in the premalignant bone marrow (BM) is not well-understood. Here, we characterized the hematopoietic progenitor compartments using a mouse strain carrying an FPD-associated mutation, Runx1R188Q. Immunophenotypic analysis showed an increase in the number of hematopoietic stem and progenitor cells (HSPCs) in the Runx1R188Q/+ mice. However, the comparison of Sca-1 and CD86 markers suggested that Sca-1 expression may result from systemic inflammation. Cytokine profiling confirmed the dysregulation of interferon-response cytokines in the BM. Furthermore, the expression of CD48, another inflammation-response protein, was also increased in Runx1R188Q/+ HSPCs. The DNA-damage response activity of Runx1R188Q/+ hematopoietic progenitor cells was defective in vitro, suggesting that Runx1R188Q may promote genomic instability. The differentiation of long-term repopulating HSCs was reduced in Runx1R188Q/+ recipient mice. Furthermore, we found that Runx1R188Q/+ HSPCs outcompete their wild-type counterparts in bidirectional repopulation assays, and that the genetic makeup of recipient mice did not significantly affect the clonal dynamics under this setting. Finally, we demonstrate that Runx1R188Q predisposes to HM in cooperation with somatic mutations found in FPDHM, using 3 mouse models. These studies establish a novel murine FPDHM model and demonstrate that germ line Runx1 mutations induce a premalignant phenotype marked by BM inflammation, selective expansion capacity, defective DNA-damage response, and predisposition to HM.


Subject(s)
Blood Platelet Disorders , Hematologic Neoplasms , Animals , Mice , Humans , Germ-Line Mutation , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Disease Susceptibility , Blood Platelet Disorders/genetics , Inflammation/genetics , Hematologic Neoplasms/genetics , Hematologic Neoplasms/complications , DNA
3.
Genes Dev ; 37(13-14): 605-620, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37536952

ABSTRACT

The transcription factor RUNX1 is mutated in familial platelet disorder with associated myeloid malignancy (FPDMM) and in sporadic myelodysplastic syndrome and leukemia. RUNX1 was shown to regulate inflammation in multiple cell types. Here we show that RUNX1 is required in granulocyte-monocyte progenitors (GMPs) to epigenetically repress two inflammatory signaling pathways in neutrophils: Toll-like receptor 4 (TLR4) and type I interferon (IFN) signaling. RUNX1 loss in GMPs augments neutrophils' inflammatory response to the TLR4 ligand lipopolysaccharide through increased expression of the TLR4 coreceptor CD14. RUNX1 binds Cd14 and other genes encoding proteins in the TLR4 and type I IFN signaling pathways whose chromatin accessibility increases when RUNX1 is deleted. Transcription factor footprints for the effectors of type I IFN signaling-the signal transducer and activator of transcription (STAT1::STAT2) and interferon regulatory factors (IRFs)-were enriched in chromatin that gained accessibility in both GMPs and neutrophils when RUNX1 was lost. STAT1::STAT2 and IRF motifs were also enriched in the chromatin of retrotransposons that were derepressed in RUNX1-deficient GMPs and neutrophils. We conclude that a major direct effect of RUNX1 loss in GMPs is the derepression of type I IFN and TLR4 signaling, resulting in a state of fixed maladaptive innate immunity.


Subject(s)
Neutrophils , Toll-Like Receptor 4 , Toll-Like Receptor 4/metabolism , Monocytes/metabolism , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Cytokines/metabolism , Chromatin/metabolism , STAT1 Transcription Factor/metabolism
4.
bioRxiv ; 2023 Jan 28.
Article in English | MEDLINE | ID: mdl-36747636

ABSTRACT

The transcription factor RUNX1 is mutated in familial platelet disorder with associated myeloid malignancies (FPDMM) and in sporadic myelodysplastic syndrome and leukemia. RUNX1 regulates inflammation in multiple cell types. Here we show that RUNX1 is required in granulocyte-monocyte progenitors (GMPs) to restrict the inflammatory response of neutrophils to toll-like receptor 4 (TLR4) signaling. Loss of RUNX1 in GMPs increased the TLR4 coreceptor CD14 on neutrophils, which contributed to neutrophils’ increased inflammatory cytokine production in response to the TLR4 ligand lipopolysaccharide. RUNX1 loss increased the chromatin accessibility of retrotransposons in GMPs and neutrophils and induced a type I interferon signature characterized by enriched footprints for signal transducer and activator of transcription (STAT1::STAT2) and interferon regulatory factors (IRF) in opened chromatin, and increased expression of interferon-stimulated genes. The overproduction of inflammatory cytokines by neutrophils was reversed by inhibitors of type I IFN signaling. We conclude that RUNX1 restrains the chromatin accessibility of retrotransposons in GMPs and neutrophils, and that loss of RUNX1 increases proinflammatory cytokine production by elevating tonic type I interferon signaling.

5.
Blood ; 135(20): 1725-1726, 2020 05 14.
Article in English | MEDLINE | ID: mdl-32407527
6.
BMC Genomics ; 19(1): 169, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29490630

ABSTRACT

BACKGROUND: ATAC-seq (Assays for Transposase-Accessible Chromatin using sequencing) is a recently developed technique for genome-wide analysis of chromatin accessibility. Compared to earlier methods for assaying chromatin accessibility, ATAC-seq is faster and easier to perform, does not require cross-linking, has higher signal to noise ratio, and can be performed on small cell numbers. However, to ensure a successful ATAC-seq experiment, step-by-step quality assurance processes, including both wet lab quality control and in silico quality assessment, are essential. While several tools have been developed or adopted for assessing read quality, identifying nucleosome occupancy and accessible regions from ATAC-seq data, none of the tools provide a comprehensive set of functionalities for preprocessing and quality assessment of aligned ATAC-seq datasets. RESULTS: We have developed a Bioconductor package, ATACseqQC, for easily generating various diagnostic plots to help researchers quickly assess the quality of their ATAC-seq data. In addition, this package contains functions to preprocess aligned ATAC-seq data for subsequent peak calling. Here we demonstrate the utilities of our package using 25 publicly available ATAC-seq datasets from four studies. We also provide guidelines on what the diagnostic plots should look like for an ideal ATAC-seq dataset. CONCLUSIONS: This software package has been used successfully for preprocessing and assessing several in-house and public ATAC-seq datasets. Diagnostic plots generated by this package will facilitate the quality assessment of ATAC-seq data, and help researchers to evaluate their own ATAC-seq experiments as well as select high-quality ATAC-seq datasets from public repositories such as GEO to avoid generating hypotheses or drawing conclusions from low-quality ATAC-seq experiments. The software, source code, and documentation are freely available as a Bioconductor package at https://bioconductor.org/packages/release/bioc/html/ATACseqQC.html .


Subject(s)
Computational Biology/methods , Sequence Analysis, DNA/methods , Software , Binding Sites , DNA Transposable Elements , DNA-Binding Proteins , Genome-Wide Association Study , High-Throughput Nucleotide Sequencing , Mutagenesis, Insertional , Transcription Initiation Site , Transposases/genetics , Transposases/metabolism , Web Browser
8.
Blood ; 130(15): 1722-1733, 2017 10 12.
Article in English | MEDLINE | ID: mdl-28790107

ABSTRACT

The gene encoding the RUNX1 transcription factor is mutated in a subset of T-cell acute lymphoblastic leukemia (T-ALL) patients, and RUNX1 mutations are associated with a poor prognosis. These mutations cluster in the DNA-binding Runt domain and are thought to represent loss-of-function mutations, indicating that RUNX1 suppresses T-cell transformation. RUNX1 has been proposed to have tumor suppressor roles in T-cell leukemia homeobox 1/3-transformed human T-ALL cell lines and NOTCH1 T-ALL mouse models. Yet, retroviral insertional mutagenesis screens identify RUNX genes as collaborating oncogenes in MYC-driven leukemia mouse models. To elucidate RUNX1 function(s) in leukemogenesis, we generated Tal1/Lmo2/Rosa26-CreERT2Runx1f/f mice and examined leukemia progression in the presence of vehicle or tamoxifen. We found that Runx1 deletion inhibits mouse leukemic growth in vivo and that RUNX silencing in human T-ALL cells triggers apoptosis. We demonstrate that a small molecule inhibitor, designed to interfere with CBFß binding to RUNX proteins, impairs the growth of human T-ALL cell lines and primary patient samples. We demonstrate that a RUNX1 deficiency alters the expression of a crucial subset of TAL1- and NOTCH1-regulated genes, including the MYB and MYC oncogenes, respectively. These studies provide genetic and pharmacologic evidence that RUNX1 has oncogenic roles and reveal RUNX1 as a novel therapeutic target in T-ALL.


Subject(s)
Core Binding Factor Alpha 2 Subunit/metabolism , Enhancer Elements, Genetic/genetics , Oncogenes , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Proto-Oncogene Proteins c-myb/genetics , Proto-Oncogene Proteins c-myc/genetics , Animals , Apoptosis , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Line, Transformed , Cell Line, Tumor , Cell Proliferation , Cell Survival , Chromatin/metabolism , Core Binding Factor beta Subunit/metabolism , Gene Deletion , Gene Expression Regulation, Leukemic , Humans , Mice , Protein Binding , Proto-Oncogene Proteins/metabolism , Receptors, Notch/metabolism , T-Cell Acute Lymphocytic Leukemia Protein 1
9.
Adv Exp Med Biol ; 962: 229-244, 2017.
Article in English | MEDLINE | ID: mdl-28299661

ABSTRACT

Acute myeloid leukemia (AML) is characterized by recurrent chromosomal rearrangements that encode for fusion proteins which drive leukemia initiation and maintenance. The inv(16) (p13q22) rearrangement is a founding mutation and the associated CBFß-SMMHC fusion protein is essential for the survival of inv(16) AML cells. This Chapter will discuss our understanding of the function of this fusion protein in disrupting hematopoietic homeostasis and creating pre-leukemic blasts, in its cooperation with other co-occurring mutations during leukemia initiation, and in leukemia maintenance. In addition, this chapter will discuss the current approaches used for the treatment of inv(16) AML and the recent development of AI-10-49, a selective targeted inhibitor of CBFß-SMMHC/RUNX1 binding, the first candidate targeted therapy for inv(16) AML.


Subject(s)
Core Binding Factor beta Subunit/genetics , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/pathology , Myosin Heavy Chains/genetics , Oncogene Proteins, Fusion/genetics , Animals , Humans
10.
EBioMedicine ; 8: 117-131, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27428424

ABSTRACT

Transcription factors have traditionally been viewed with skepticism as viable drug targets, but they offer the potential for completely novel mechanisms of action that could more effectively address the stem cell like properties, such as self-renewal and chemo-resistance, that lead to the failure of traditional chemotherapy approaches. Core binding factor is a heterodimeric transcription factor comprised of one of 3 RUNX proteins (RUNX1-3) and a CBFß binding partner. CBFß enhances DNA binding of RUNX subunits by relieving auto-inhibition. Both RUNX1 and CBFß are frequently mutated in human leukemia. More recently, RUNX proteins have been shown to be key players in epithelial cancers, suggesting the targeting of this pathway could have broad utility. In order to test this, we developed small molecules which bind to CBFß and inhibit its binding to RUNX. Treatment with these inhibitors reduces binding of RUNX1 to target genes, alters the expression of RUNX1 target genes, and impacts cell survival and differentiation. These inhibitors show efficacy against leukemia cells as well as basal-like (triple-negative) breast cancer cells. These inhibitors provide effective tools to probe the utility of targeting RUNX transcription factor function in other cancers.


Subject(s)
Antineoplastic Agents/pharmacology , Core Binding Factor alpha Subunits/metabolism , Core Binding Factor beta Subunit/metabolism , Neoplasms/metabolism , Allosteric Regulation/drug effects , Antineoplastic Agents/chemistry , Cell Differentiation/drug effects , Cell Differentiation/genetics , Cell Line, Tumor , Core Binding Factor alpha Subunits/chemistry , Core Binding Factor beta Subunit/chemistry , Core Binding Factor beta Subunit/genetics , Drug Discovery , Drug Screening Assays, Antitumor , Gene Expression Regulation, Neoplastic/drug effects , Gene Knockdown Techniques , Humans , Leukemia , Models, Molecular , Molecular Conformation , Mutation , Neoplasms/genetics , Nuclear Magnetic Resonance, Biomolecular , Protein Binding/drug effects , Protein Interaction Domains and Motifs , Protein Multimerization , Signal Transduction/drug effects , Structure-Activity Relationship
11.
Science ; 347(6223): 779-84, 2015 Feb 13.
Article in English | MEDLINE | ID: mdl-25678665

ABSTRACT

Acute myeloid leukemia (AML) is the most common form of adult leukemia. The transcription factor fusion CBFß-SMMHC (core binding factor ß and the smooth-muscle myosin heavy chain), expressed in AML with the chromosome inversion inv(16)(p13q22), outcompetes wild-type CBFß for binding to the transcription factor RUNX1, deregulates RUNX1 activity in hematopoiesis, and induces AML. Current inv(16) AML treatment with nonselective cytotoxic chemotherapy results in a good initial response but limited long-term survival. Here, we report the development of a protein-protein interaction inhibitor, AI-10-49, that selectively binds to CBFß-SMMHC and disrupts its binding to RUNX1. AI-10-49 restores RUNX1 transcriptional activity, displays favorable pharmacokinetics, and delays leukemia progression in mice. Treatment of primary inv(16) AML patient blasts with AI-10-49 triggers selective cell death. These data suggest that direct inhibition of the oncogenic CBFß-SMMHC fusion protein may be an effective therapeutic approach for inv(16) AML, and they provide support for transcription factor targeted therapy in other cancers.


Subject(s)
Antineoplastic Agents/therapeutic use , Benzimidazoles/therapeutic use , Leukemia, Myeloid, Acute/drug therapy , Oncogene Proteins, Fusion/antagonists & inhibitors , Animals , Antineoplastic Agents/chemistry , Benzimidazoles/chemistry , Cell Line, Tumor , Core Binding Factor Alpha 2 Subunit/antagonists & inhibitors , Core Binding Factor Alpha 2 Subunit/metabolism , Female , Humans , Mice , Mice, Inbred C57BL , Oncogene Proteins, Fusion/metabolism , Protein Interaction Maps , Small Molecule Libraries/chemistry
12.
Blood ; 124(3): 426-36, 2014 Jul 17.
Article in English | MEDLINE | ID: mdl-24894773

ABSTRACT

Acute myeloid leukemia (AML) results from the activity of driver mutations that deregulate proliferation and survival of hematopoietic stem cells (HSCs). The fusion protein CBFß-SMMHC impairs differentiation in hematopoietic stem and progenitor cells and induces AML in cooperation with other mutations. However, the combined function of CBFß-SMMHC and cooperating mutations in preleukemic expansion is not known. Here, we used Nras(LSL-G12D); Cbfb(56M) knock-in mice to show that allelic expression of oncogenic Nras(G12D) and Cbfß-SMMHC increases survival of preleukemic short-term HSCs and myeloid progenitor cells and maintains the differentiation block induced by the fusion protein. Nras(G12D) and Cbfß-SMMHC synergize to induce leukemia in mice in a cell-autonomous manner, with a shorter median latency and higher leukemia-initiating cell activity than that of mice expressing Cbfß-SMMHC. Furthermore, Nras(LSL-G12D); Cbfb(56M) leukemic cells were sensitive to pharmacologic inhibition of the MEK/ERK signaling pathway, increasing apoptosis and Bim protein levels. These studies demonstrate that Cbfß-SMMHC and Nras(G12D) promote the survival of preleukemic myeloid progenitors primed for leukemia by activation of the MEK/ERK/Bim axis, and define Nras(LSL-G12D); Cbfb(56M) mice as a valuable genetic model for the study of inversion(16) AML-targeted therapies.


Subject(s)
Monomeric GTP-Binding Proteins/metabolism , Oncogene Proteins, Fusion/metabolism , Oncogene Proteins/metabolism , Preleukemia/metabolism , Preleukemia/pathology , Animals , Apoptosis , Apoptosis Regulatory Proteins/metabolism , Bcl-2-Like Protein 11 , Cell Survival , Gene Knock-In Techniques , Leukemia, Experimental/etiology , Leukemia, Experimental/metabolism , Leukemia, Experimental/pathology , Leukemia, Myeloid, Acute/etiology , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , MAP Kinase Signaling System , Membrane Proteins/metabolism , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Transgenic , Monomeric GTP-Binding Proteins/genetics , Mutation, Missense , Neoplastic Stem Cells/metabolism , Neoplastic Stem Cells/pathology , Oncogene Proteins/genetics , Oncogene Proteins, Fusion/genetics , Preleukemia/genetics , Proto-Oncogene Proteins/metabolism
13.
Blood ; 113(14): 3323-32, 2009 Apr 02.
Article in English | MEDLINE | ID: mdl-19179305

ABSTRACT

The core-binding factor (CBF) is a master regulator of developmental and differentiation programs, and CBF alterations are frequently associated with acute leukemia. The role of the CBF member RUNX2 in hematopoiesis is poorly understood. Genetic evidence suggests that deregulation of Runx2 may cause myeloid leukemia in mice expressing the fusion oncogene Cbfb-MYH11. In this study, we show that sustained expression of Runx2 modulates Cbfbeta-smooth muscle myosin heavy chain (SMMHC)-mediated myeloid leukemia development. Expression of Runx2 is high in the hematopoietic stem cell compartment and decreases during myeloid differentiation. Sustained Runx2 expression hinders myeloid progenitor differentiation capacity and represses expression of CBF targets Csf1R, Mpo, Cebpd, the cell cycle inhibitor Cdkn1a, and myeloid markers Cebpa and Gfi1. In addition, full-length Runx2 cooperates with Cbfbeta-SMMHC in leukemia development in transplantation assays. Furthermore, we show that the nuclear matrix-targeting signal and DNA-binding runt-homology domain of Runx2 are essential for its leukemogenic activity. Conversely, Runx2 haplo-insufficiency delays the onset and reduces the incidence of acute myeloid leukemia. Together, these results indicate that Runx2 is expressed in the stem cell compartment, interferes with differentiation and represses CBF targets in the myeloid compartment, and modulates the leukemogenic function of Cbfbeta-SMMHC in mouse leukemia.


Subject(s)
Core Binding Factor Alpha 1 Subunit/physiology , Leukemia, Myeloid, Acute/genetics , Oncogene Proteins, Fusion/physiology , Animals , Bone Marrow/metabolism , Bone Marrow/physiology , Cell Differentiation/genetics , Cell Transformation, Neoplastic/genetics , Cells, Cultured , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Down-Regulation/genetics , Hematopoiesis/genetics , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/physiology , Leukemia, Myeloid, Acute/mortality , Mice , Mice, Transgenic , Models, Biological , Oncogene Proteins, Fusion/genetics , Survival Analysis
14.
Cancer Cell ; 13(4): 289-91, 2008 Apr.
Article in English | MEDLINE | ID: mdl-18394549

ABSTRACT

Leukemia-initiating cells can originate from hematopoietic progenitor cells that have acquired self-renewal capacity upon transformation with leukemic fusion genes. In this issue of Cancer Cell, Kirstetter and colleagues describe a mouse model for the frequent CEBPA mutations in human acute myeloid leukemia that result in the synthesis of only the 30kDa isoform, but not the 42kDa isoform of C/EBPalpha. This mutation uncouples C/EBPalpha's roles in myeloid differentiation and proliferation control. Furthermore, this mutation activates self-renewal in committed myeloid progenitor cells and induces myeloid malignancy with complete penetrance that is sustained by leukemia-initiating cells with a committed myeloid molecular signature.


Subject(s)
CCAAT-Enhancer-Binding Protein-alpha/metabolism , Leukemia, Myelomonocytic, Acute/metabolism , Leukemia, Myelomonocytic, Acute/pathology , Animals , CCAAT-Enhancer-Binding Protein-alpha/deficiency , CCAAT-Enhancer-Binding Protein-alpha/genetics , Gene Expression Profiling , Leukemia, Myelomonocytic, Acute/genetics , Mice , Mutant Proteins/genetics , Mutant Proteins/metabolism , Myeloid Progenitor Cells/pathology , Neoplastic Stem Cells/pathology , Protein Isoforms/genetics , Protein Isoforms/metabolism
15.
Blood ; 111(3): 1543-51, 2008 Feb 01.
Article in English | MEDLINE | ID: mdl-17940206

ABSTRACT

The core-binding factor (CBF)-associated leukemia fusion protein CBFbeta-SMMHC impairs myeloid and lymphoid differentiation. By inhibiting RUNX function, the fusion oncoprotein predisposes specifically to acute myeloid leukemia in both patients and mouse models. We have shown that Cbfbeta-SMMHC expression leads to a sustained reduction of circulating B lymphocytes in the mouse. In this study, we demonstrate that the activation of Cbfbeta-SMMHC reduces pre-pro-B cells approximately 3-fold and pre-B cells more than 10-fold and that this differentiation block is cell-autonomous. The reduction of pre-pro-B cells coincided with an increase in apoptosis in this population. The number of common lymphoid progenitors (CLPs) were not affected; however, the expression of critical early B-cell factors Ebf1, Tcfe2a, and Pax5 was significantly reduced. In addition, Cbfbeta-SMMHC reduced Rag1 and Rag2 expression and impaired V(D)J recombination in the CLPs. Furthermore, CLPs expressing Cbfbeta-SMMHC also show inhibition of B cell-specific genes Cd79a, Igll1, VpreB1, and Blk. These results demonstrate that CBF/RUNX function is essential for the function of CLPs, the survival of pre-pro-B cells, and the establishment of a B lineage-specific transcriptional program. This study also provides a mechanistic basis for the myeloid-lineage bias of CBFbeta-SMMHC-associated leukemia.


Subject(s)
Cell Differentiation , Core Binding Factor alpha Subunits/metabolism , Lymphoid Progenitor Cells/cytology , Lymphoid Progenitor Cells/metabolism , Oncogene Proteins, Fusion/metabolism , Animals , Cell Lineage , DNA-Binding Proteins/metabolism , Homeodomain Proteins/metabolism , Mice , Mice, Transgenic , Oncogene Proteins, Fusion/genetics , Sensitivity and Specificity , Transcription, Genetic/genetics , VDJ Recombinases/genetics , VDJ Recombinases/metabolism
16.
Blood ; 109(8): 3432-40, 2007 Apr 15.
Article in English | MEDLINE | ID: mdl-17185462

ABSTRACT

Recent studies suggest that the chromosome 16 inversion, associated with acute myeloid leukemia M4Eo, takes place in hematopoietic stem cells. If this is the case, it is of interest to know the effects of the resulting fusion gene, CBFB-MYH11, on other lineages. Here we studied T-cell development in mice expressing Cbfb-MYH11 and compared them with mice compound-heterozygous for a Cbfb null and a hypomorphic GFP knock-in allele (Cbfb(-/GFP)), which had severe Cbfb deficiency. We found a differentiation block at the DN1 stage of thymocyte development in Cbfb-MYH11 knock-in chimeras. In a conditional knock-in model in which Cbfb-MYH11 expression was activated by Lck-Cre, there was a 10-fold reduction in thymocyte numbers in adult thymus, resulting mainly from impaired survival of CD4+CD8+ thymocytes. Although Cbfb-MYH11 derepressed CD4 expression efficiently in reporter assays, such derepression was less pronounced in vivo. On the other hand, CD4 expression was derepressed and thymocyte development was blocked at DN1 and DN2 stages in E17.5 Cbfb(-/GFP) thymus, with a 20-fold reduction of total thymocyte numbers. Our data suggest that Cbfb-MYH11 suppressed Cbfb in several stages of T-cell development and provide a mechanism for CBFB-MYH11 association with myeloid but not lymphoid leukemia.


Subject(s)
Chromosome Inversion , Core Binding Factor beta Subunit/biosynthesis , Leukemia, Myeloid/metabolism , Myosin Heavy Chains/biosynthesis , Oncogene Proteins, Fusion/biosynthesis , T-Lymphocytes/metabolism , Thymus Gland/metabolism , Animals , CD4 Antigens/biosynthesis , CD8 Antigens/immunology , Cell Death/genetics , Cell Survival/genetics , Core Binding Factor beta Subunit/deficiency , Leukemia, Lymphoid/genetics , Leukemia, Lymphoid/metabolism , Leukemia, Lymphoid/pathology , Leukemia, Myeloid/genetics , Leukemia, Myeloid/pathology , Mice , Mice, Knockout , Myosin Heavy Chains/genetics , Oncogene Proteins, Fusion/genetics , T-Lymphocytes/pathology , Thymus Gland/pathology
17.
Cancer Res ; 66(23): 11214-8, 2006 Dec 01.
Article in English | MEDLINE | ID: mdl-17145866

ABSTRACT

The gene encoding for core-binding factor beta (CBFbeta) is altered in acute myeloid leukemia samples with an inversion in chromosome 16, expressing the fusion protein CBFbeta-SMMHC. Previous studies have shown that this oncoprotein interferes with hematopoietic differentiation and proliferation and participates in leukemia development. In this study, we provide evidence that Cbfbeta modulates the oncogenic function of this fusion protein. We show that Cbfbeta plays an important role in proliferation of hematopoietic progenitors expressing Cbfbeta-SMMHC in vitro. In addition, Cbfbeta-SMMHC-mediated leukemia development is accelerated in the absence of Cbfbeta. These results indicate that the balance between Cbfbeta and Cbfbeta-SMMHC directly affects leukemia development, and suggest that CBF-specific therapeutic molecules should target CBFbeta-SMMHC function while maintaining CBFbeta activity.


Subject(s)
Core Binding Factor beta Subunit/genetics , Leukemia, Myeloid/pathology , Myosin Heavy Chains/genetics , Oncogene Proteins, Fusion/genetics , Acute Disease , Animals , Bone Marrow Cells/metabolism , Cell Proliferation , Chromosome Inversion , Chromosomes, Human, Pair 16/genetics , Core Binding Factor beta Subunit/metabolism , Gene Expression Regulation, Neoplastic , Genetic Predisposition to Disease/genetics , Genotype , Heterozygote , Humans , Kaplan-Meier Estimate , Leukemia, Myeloid/genetics , Leukemia, Myeloid/metabolism , Mice , Mice, Transgenic , Muscle, Smooth/chemistry , Mutation/genetics , Myeloid Progenitor Cells/metabolism , Myosin Heavy Chains/metabolism , Oncogene Proteins, Fusion/metabolism
18.
J Virol ; 80(22): 11409-15, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16971449

ABSTRACT

Mice harboring three mouse mammary tumor virus (MMTV) variants develop pregnancy-dependent (PD) tumors that progress to pregnancy-independent (PI) behavior through successive passages. Herein, we identified 10 predominant insertions in PI transplants from 8 independent tumor lines. These mutations were also detected in small cell populations in the early PD passages. In addition, we identified a new viral insertion upstream of the gene Rspo3, which is overexpressed in three of the eight independent tumor lines and codes for a protein very similar to the recently described protein encoded by Int7. This study suggests that during progression towards hormone independence, clonal expansion of cells with specific mutations might be more relevant than the occurrence of new MMTV insertions.


Subject(s)
Mammary Neoplasms, Experimental/genetics , Mammary Neoplasms, Experimental/virology , Mammary Tumor Virus, Mouse/genetics , Mutation , Retroviridae Infections/virology , Selection, Genetic , Tumor Virus Infections/virology , Animals , Disease Models, Animal , Female , Mice , Recombination, Genetic
19.
Cancer Cell ; 9(1): 57-68, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16413472

ABSTRACT

The acute myeloid leukemia (AML)-associated CBF beta-SMMHC fusion protein impairs hematopoietic differentiation and predisposes to leukemic transformation. The mechanism of leukemia progression, however, is poorly understood. In this study, we report a conditional Cbfb-MYH11 knockin mouse model that develops AML with a median latency of 5 months. Cbf beta-SMMHC expression reduced the multilineage repopulation capacity of hematopoietic stem cells (HSCs) while maintaining their numbers under competitive conditions. The fusion protein induced abnormal myeloid progenitors (AMPs) with limited proliferative potential but leukemic predisposition similar to that of HSCs in transplanted mice. In addition, Cbf beta-SMMHC blocked megakaryocytic maturation at the CFU-Meg to megakaryocyte transition. These data show that a leukemia oncoprotein can inhibit differentiation and proliferation while not affecting the maintenance of long-term HSCs.


Subject(s)
Leukemia, Myeloid/pathology , Myeloid Progenitor Cells/pathology , Oncogene Proteins, Fusion/metabolism , Preleukemia/pathology , Acute Disease , Animals , B-Lymphocytes/pathology , Blood Platelets/pathology , Cell Proliferation , Hematopoiesis , Leukemia, Myeloid/metabolism , Megakaryocytes/metabolism , Megakaryocytes/pathology , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Myeloid Progenitor Cells/metabolism , Oncogene Proteins, Fusion/genetics , Preleukemia/metabolism
20.
Blood ; 105(7): 2900-7, 2005 Apr 01.
Article in English | MEDLINE | ID: mdl-15585652

ABSTRACT

Recurrent chromosomal rearrangements are associated with the development of acute myeloid leukemia (AML). The frequent inversion of chromosome 16 creates the CBFB-MYH11 fusion gene that encodes the fusion protein CBFbeta-SMMHC. This fusion protein inhibits the core-binding factor (CBF), resulting in a block of hematopoietic differentiation, and induces leukemia upon the acquisition of additional mutations. A recent genetic screen identified Plag1 and Plagl2 as CBF beta-SMMHC candidate cooperating proteins. In this study, we demonstrate that Plag1 and Plagl2 independently cooperate with CBF beta-SMMHC in vivo to efficiently trigger leukemia with short latency in the mouse. In addition, Plag1 and Plagl2 increased proliferation by inducing G1 to S transition that resulted in the expansion of hematopoietic progenitors and increased cell renewal in vitro. Finally, PLAG1 and PLAGL2 expression was increased in 20% of human AML samples. Interestingly, PLAGL2 was preferentially increased in samples with chromosome 16 inversion, suggesting that PLAG1 and PLAGL2 may also contribute to human AML. Overall, this study shows that Plag1 and Plagl2 are novel leukemia oncogenes that act by expanding hematopoietic progenitors expressing CbF beta-SMMHC.


Subject(s)
DNA-Binding Proteins/genetics , Leukemia, Myeloid/genetics , Oncogene Proteins, Fusion/genetics , RNA-Binding Proteins/genetics , Transcription Factors/genetics , Acute Disease , Adolescent , Adult , Animals , DNA-Binding Proteins/metabolism , Female , G1 Phase/immunology , Gene Expression Regulation, Leukemic , Hematopoietic Stem Cells/cytology , Humans , Leukemia, Myeloid/physiopathology , Male , Mice , Mice, Mutant Strains , Middle Aged , Mutagenesis, Insertional , Oncogene Proteins, Fusion/metabolism , RNA-Binding Proteins/metabolism , Retroviridae/genetics , S Phase/immunology , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...