Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 14: 1228079, 2023.
Article in English | MEDLINE | ID: mdl-37744909

ABSTRACT

Introduction: Avocados are typically sold in unsanitary conditions at the retail markets in Ecuador, which can raise the risk of microbial contamination. These microorganisms could exhibit multi-antibiotic resistance (MAR), being a serious threat concern to human health. In this study, we aimed to evaluate the microbiota and its antibiotic resistance profile in avocado Guatemalan fruits (Persea nubigena var. guatemalensis), at ripe stage: immature, firm light green (ready to eat in 4 days), peel (AFPE) and pulp (AFPU), and mature intense green (ready to eat) peel (AMPE) and pulp (AMPU), to gain baseline information on the prevalence of MAR bacteria. Methods: Culture-independent (16S rRNA metagenomics) and culture-dependent approach (to detect specific indicator microorganisms) were used. Moreover, antibiotic susceptibility of selected target indicator bacteria was assessed providing information about the antibiotic resistance (AR) among the groups. Results: Based on 16S rRNA gene metagenomic analysis, over 99.78% of reads were classified as bacteria in all samples. Shannon diversity index varies from 1.22 to 2.22, with the highest bacterial population assigned to AFPE samples (1327 species). The highest microbial counts of indicator Staphylococcus spp. (STAPHY), Enterobacter spp. (ENT), and Listeria spp. (LIST), were detected in AMPE samples. Thirty percent of the selected STAPHYs, and 20.91% of Enterobacter (ENT) clones were resistant to various classes of antibiotics. The MAR index varies between 0.25 to 0.88 and was clone-, and fruit ripe stage-dependent. Conclusions: The results indicated that ready to eat avocados contained detectable levels of MAR bacteria, including methicillin resistant (MR)-STAPHY, which may act as a potential vector for the spread of antibiotic resistance. To achieve the increase of the production and marketing of Fuerte cultivar in Ecuador, it is vitally important to consider valuable strategies to protect the fruits at the early ripe stage in future. Thus, it is crucial to set up efficient control measures and develop coordinated strategies to guarantee the microbiological quality of the food.

2.
Front Microbiol ; 14: 1154815, 2023.
Article in English | MEDLINE | ID: mdl-37213502

ABSTRACT

A major challenge in microbial ecology is to understand the principles and processes by which microbes associate and interact in community assemblages. Microbial communities in mountain glaciers are unique as first colonizers and nutrient enrichment drivers for downstream ecosystems. However, mountain glaciers have been distinctively sensitive to climate perturbations and have suffered a severe retreat over the past 40 years, compelling us to understand glacier ecosystems before their disappearance. This is the first study in an Andean glacier in Ecuador offering insights into the relationship of physicochemical variables and altitude on the diversity and structure of bacterial communities. Our study covered extreme Andean altitudes at the Cayambe Volcanic Complex, from 4,783 to 5,583 masl. Glacier soil and ice samples were used as the source for 16S rRNA gene amplicon libraries. We found (1) effects of altitude on diversity and community structure, (2) the presence of few significantly correlated nutrients to community structure, (3) sharp differences between glacier soil and glacier ice in diversity and community structure, where, as quantified by the Shannon γ-diversity distribution, the meta-community in glacier soil showed more diversity than in glacier ice; this pattern was related to the higher variability of the physicochemical distribution of variables in the former substrate, and (4) significantly abundant genera associated with either high or low altitudes that could serve as biomarkers for studies on climate change. Our results provide the first assessment of these unexplored communities, before their potential disappearance due to glacier retreat and climate change.

3.
Article in English | MEDLINE | ID: mdl-36767267

ABSTRACT

Multidrug-resistant bacteria present resistance mechanisms against ß-lactam antibiotics, such as Extended-Spectrum Beta-lactamases (ESBL) and Metallo-ß-lactamases enzymes (MBLs) which are operon encoded in Gram-negative species. Likewise, Gram-positive bacteria have evolved other mechanisms through mec genes, which encode modified penicillin-binding proteins (PBP2). This study aimed to determine the presence and spread of ß-lactam antibiotic resistance genes and the microbiome circulating in Quito's Public Transport (QTP). A total of 29 station turnstiles were swabbed to extract the surface environmental DNA. PCRs were performed to detect the presence of 13 antibiotic resistance genes and to identify and to amplify 16S rDNA for barcoding, followed by clone analysis, Sanger sequencing, and BLAST search. ESBL genes blaTEM-1 and blaCTX-M-1 and MBL genes blaOXA-181 and mecA were detected along QPT stations, blaTEM being the most widely spread. Two subvariants were found for blaTEM-1, blaCTX-M-1, and blaOXA-181. Almost half of the circulating bacteria found at QPT stations were common human microbiota species, including those classified by the WHO as pathogens of critical and high-priority surveillance. ß-lactam antibiotic resistance genes are prevalent throughout QPT. This is the first report of blaOXA-181 in environmental samples in Ecuador. Moreover, we detected a new putative variant of this gene. Some commensal coagulase-negative bacteria may have a role as mecA resistance reservoirs.


Subject(s)
Anti-Bacterial Agents , beta-Lactamases , Humans , Ecuador , beta-Lactamases/genetics , beta-Lactamases/metabolism , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Bacteria/metabolism , Monobactams , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests
4.
Vet Sci ; 9(12)2022 Nov 25.
Article in English | MEDLINE | ID: mdl-36548820

ABSTRACT

The genus Prototheca, a unicellular, non-photosynthetic, yeast-like microalgae, is a pathogen of concern for the dairy industry. It causes bovine mastitis that currently cannot be cured, and hence generates significant economic losses in milk production. In this study, for the first time in Ecuador, we identify Prototheca bovis as the etiologic agent of chronic mastitis in dairy cattle. Milk samples (n = 458) of cows with chronic mastitis were cultured on Sabouraud Dextrose Agar (SDA). Microscopy and cytB gene sequencing were used to identify Prototheca, whereby Prototheca bovis was isolated from 15.1% (n = 69) of the milk samples, one of the highest infection rates that can be found in the literature in a "non-outbreak" situation. No other Prototheca species were found. We were unable to isolate the alga from environmental samples. We showed that P. bovis was relatively resistant to disinfectants used to sterilize milking equipment on the cattle farms where it was isolated. We discuss how to avoid future infection and also hypothesize that the real prevalence of Prototheca infection in bovine mastitis is probably much higher than what was detected. We recommend a protocol to increase the diagnostic yield in the bacteriology laboratory.

5.
Saudi J Biol Sci ; 29(3): 1550-1558, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35280549

ABSTRACT

Phosphonate compounds are the basis of many xenobiotic pollutants, such as Glyphosate (N-(phosphonomethyl-glycine). Only procaryotic microorganisms and the lower eukaryotes are capable of phosphonate biodegradation through C-P lyase pathways. Thus, the aim of this study was to determine the presence of C-P lyase genes in Ecuadorian freshwater systems as a first step towards assessing the presence of putative glyphosate degraders. To that end, two Nested PCR assays were designed to target the gene that codifies for the subunit J (phnJ), which breaks the C-P bond that is critical for glyphosate mineralization. The assays designed in this study led to the detection of phnJ genes in 7 out of 8 tested water bodies. The amplified fragments presented 85-100% sequence similarity with phnJ genes that belong to glyphosate-degrading microorganisms. Nine sequences were not reported previously in the GenBank. The presence of phosphonate degraders was confirmed by isolating three strains able to grow using glyphosate as a unique carbon source. According to the 16S sequence, these strains belong to the Pantoea, Pseudomonas, and Klebsiella genera. Performing a Nested PCR amplification of phnJ genes isolated from eutrophicated water bodies, prior to isolation, may be a cost-effective strategy for the bioprospection of new species and/or genes that might have new properties for biotech industries, laying the groundwork for additional research.

6.
C R Biol ; 343(1): 41-52, 2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32720487

ABSTRACT

Diatom identification is a key step in using these microorganisms as water quality bioindicators. Morphological diagnosis is a difficult task due to the enormous number of species and their microscopic size. This can be overcome using molecular tools to complement the diagnosis. The main goal of this work was to obtain the DNA barcode of Ecuadorian epilithic diatoms with a wide geographical distribution, a well-defined ecological range and characteristics that allow them to be reliable indicator species. Unialgal diatom cultures were obtained from environmental samples of Ecuadorian Andean streams. Morphological characterization of cultures was carried out under SEM microscopy. For molecular characterization, 18SV4 and rbcL barcodes were sequenced from each strain and blasted against a GenBank database. A phylogenetic tree for each barcode was constructed using the ML method including sequences of strains of the studied species from different geographical locations. The results showed the following five species to be suitable as bioindicators and these were isolated. Sellaphora seminulum (strain JA01b, c), Nitzschia fonticola (strain SP02a) and N. palea (strain CA01a) are tolerant to eutrophication; Eolimna minima (strain CH02a) is a mesotrophic water bioindicator, and Achnanthidium minutissimum (strain JA01a) is an oligotrophic water bioindicator. The comparison with the GenBank database of the barcoding regions supported the morphological identification. The barcoding sequences of the strains showed a high percentage of identity with the sequences reported in INSDC databases for the same species. The topology of the phylogenetic trees demonstrates that epilithic diatoms from Ecuador are closely related to those of same species isolated from other geographical regions. This study is a first attempt to establish a morphological and molecular taxonomic reference library for neotropical diatoms. This study demonstrates that it would be feasible to use the existing barcoding data for diatoms to develop molecular tools for the bioassessment of aquatic ecosystems in the Ecuadorian Andean region.


L'identification des diatomées est une étape clé dans l'utilisation de ces microorganismes comme bioindicateurs de la qualité de l'eau. Le diagnostic morphologique est une tâche difficile en raison du nombre considérable d'espèces et de leur dimension microscopique. Il est possible de surmonter cette difficulté en utilisant des techniques moléculaires pour compléter le diagnostic. L'objectif principal de ce travail était d'obtenir le code-barre de l'ADN des diatomées épilithiques équatoriennes ayant une large distribution géographique, une niche écologique bien définie et des caractéristiques leur permettant d'être des espèces indicatrices fiables. Des cultures de diatomées unialgales ont été obtenues à partir d'échantillons environnementaux de cours d'eau des Andes équatoriennes. La caractérisation morphologique des cultures a été réalisée sous microscopie MEB. Pour la caractérisation moléculaire, les codes-barres 18SV4 et rbcL ont été séquencés à partir de chaque souche et comparés à la base de données GenBank. Pour chaque code-barres, un arbre phylogénétique a été construit à partir de la méthode ML comprenant des séquences de souches des espèces étudiées, provenant de différents lieux géographiques. Les résultats ayant montré que les cinq espèces suivantes étaient appropriées comme bioindicateurs, elles ont été isolées. Sellaphora seminulum (souche JA01b, c), Nitzschia fonticola (souche SP02a) et N. palea (souche CA01a) sont tolérantes à l'eutrophisation ; Eolimna minima (souche CH02a) est un bioindicateur d'eau mésotrophe, et Achnanthidium minutissimum (souche JA01a) est un bioindicateur d'eau oligotrophe. La comparaison avec la base de données GenBank des régions de code-barres a supporté leurs identifications morphologiques. Les séquences de code-barres des souches ont montré un pourcentage élevé d'identité génétique avec les séquences signalées dans les bases de données de l'INSDC pour la même espèce. La topologie des arbres phylogénétiques démontre que les diatomées épilithiques de l'Équateur sont étroitement liées à celles des mêmes espèces isolées d'autres régions géographiques. Cette étude est une première tentative d'établir une bibliothèque de référence morphologique et taxonomique moléculaire pour les diatomées néotropicales. Cette étude démontre qu'il serait possible d'utiliser les données de code-barres existantes pour les diatomées afin de développer des instruments moléculaires pour la bioévaluation des écosystèmes aquatiques dans la région andine équatorienne.


Subject(s)
Diatoms/classification , Environmental Biomarkers , Water Quality , DNA Barcoding, Taxonomic/methods , Diatoms/genetics , Ecosystem , Ecuador , Eutrophication , Phylogeny , Rivers
7.
C R Biol ; 341(4): 256-263, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29655600

ABSTRACT

Epilithic diatom communities are particularly suitable for the evaluation of freshwater quality. In Ecuador, however, no water quality index includes this biotic parameter. This work is the first attempt in the country to determine the composition of epilithic diatom communities associated with different degrees of eutrophication. This was accomplished by measuring physical, chemical and microbiological variables at five sampling sites along the Pita River, Ecuador, from August to December 2016. The results indicate a clear gradient of eutrophication from sampling sites P1 (good water) in the upper reaches to P5 (bad water) located in the lower reaches. Concerning diatom analyses, the results indicated a high diversity for tropical areas in terms of species richness, varying from S=34 in headwaters to S=42 downstream. Moreover, the results obtained suggest a lack of concordance with the trophic values given to some of the epilithic diatoms in the literature. There were also species that seem to be sensitive to downstream nutrient increases that were not considered as bioindicators in previous studies. We concluded that the trophic values of diatom species available in the scientific literature are not directly applicable to their sites in the Pita River. Hence, it is necessary to establish a trophic diatom index for the Andean region of Ecuador.


Subject(s)
Diatoms , Environmental Monitoring/methods , Eutrophication , Rivers , Water Quality
8.
Plant J ; 77(6): 944-53, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24456507

ABSTRACT

Transcription factors (TFs) are key regulators of gene expression in all organisms. In eukaryotes, TFs are often represented by functionally redundant members of large gene families. Overexpression might prove a means to unveil the biological functions of redundant TFs; however, constitutive overexpression of TFs frequently causes severe developmental defects, preventing their functional characterization. Conditional overexpression strategies help to overcome this problem. Here, we report on the TRANSPLANTA collection of Arabidopsis lines, each expressing one of 949 TFs under the control of a ß-estradiol-inducible promoter. Thus far, 1636 independent homozygous lines, representing an average of 2.6 lines for every TF, have been produced for the inducible expression of 634 TFs. Along with a GUS-GFP reporter, randomly selected TRANSPLANTA lines were tested and confirmed for conditional transgene expression upon ß-estradiol treatment. As a proof of concept for the exploitation of this resource, ß-estradiol-induced proliferation of root hairs, dark-induced senescence, anthocyanin accumulation and dwarfism were observed in lines conditionally expressing full-length cDNAs encoding RHD6, WRKY22, MYB123/TT2 and MYB26, respectively, in agreement with previously reported phenotypes conferred by these TFs. Further screening performed with other TRANSPLANTA lines allowed the identification of TFs involved in different plant biological processes, illustrating that the collection is a powerful resource for the functional characterization of TFs. For instance, ANAC058 and a TINY/AP2 TF were identified as modulators of ABA-mediated germination potential, and RAP2.10/DEAR4 was identified as a regulator of cell death in the hypocotyl-root transition zone. Seeds of TRANSPLANTA lines have been deposited at the Nottingham Arabidopsis Stock Centre for further distribution.


Subject(s)
Arabidopsis/genetics , Plants, Genetically Modified , Transcription Factors/metabolism , Transcriptional Activation/drug effects , Abscisic Acid/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , DNA, Complementary/genetics , Estradiol/metabolism , Gene Expression , Genes, Reporter , Genetic Vectors , Germination , Phenotype , Plant Growth Regulators/metabolism , Plant Roots/genetics , Plant Roots/metabolism , Promoter Regions, Genetic/genetics , Seedlings/genetics , Seedlings/metabolism , Seeds/genetics , Seeds/metabolism , Transcription Factors/genetics , Transgenes
SELECTION OF CITATIONS
SEARCH DETAIL
...