Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 140
Filter
1.
Andes Pediatr ; 95(1): 17-23, 2024 Feb.
Article in Spanish | MEDLINE | ID: mdl-38587340

ABSTRACT

During the winter of 2023, Chile faced a complex situation related to the respiratory syncytial virus (RSV). After experiencing a decline in RSV circulation during the years of the SARS-CoV-2 pandemic, a late outbreak was observed in the spring of 2022 and an early onset of the outbreak in 2023, with a significant increase in the number of serious cases. The ineffectiveness of strategic planning and risk communication contributed to the complexity of the situation. To avoid the above next winter, measures such as active surveillance, unification of definitions for acute respiratory infections, identification of RSV variants, public education about infections and advance preparation regarding hospital beds and health personnel are suggested. The importance of immunization and intersectoral collaboration to acquire new preventive alternatives is highlighted, as well as the need for early communication about the importance of immunization and identification of high-risk groups, improvement in training of medical personnel and strategic planning of the Ministry of Health. seeking a proactive and collaborative approach to address the complex RSV situation in future winters. The Chilean Immunization Advisory Committee has already carried out an analysis and recommendation on a new prevention alternative. This working group will support any decision of the Ministry of Health in public policies that attempt a change in the paradigm of control of this disease for the health of the children of our country.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Respiratory Tract Infections , Child , Humans , Respiratory Syncytial Virus Infections/diagnosis , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/prevention & control , Immunization , Vaccination
2.
Adv Sci (Weinh) ; 11(14): e2309289, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38326078

ABSTRACT

Organoids are becoming increasingly relevant in biology and medicine for their physiological complexity and accuracy in modeling human disease. To fully assess their biological profile while preserving their spatial information, spatiotemporal imaging tools are warranted. While previously developed imaging techniques, such as four-dimensional (4D) live imaging and light-sheet imaging have yielded important clinical insights, these technologies lack the combination of cyclic and multiplexed analysis. To address these challenges, bioorthogonal click chemistry is applied to display the first demonstration of multiplexed cyclic imaging of live and fixed patient-derived glioblastoma tumor organoids. This technology exploits bioorthogonal click chemistry to quench fluorescent signals from the surface and intracellular of labeled cells across multiple cycles, allowing for more accurate and efficient molecular profiling of their complex phenotypes. Herein, the versatility of this technology is demonstrated for the screening of glioblastoma markers in patient-derived human glioblastoma organoids while conserving their viability. It is anticipated that the findings and applications of this work can be broadly translated into investigating physiological developments in other organoid systems.


Subject(s)
Glioblastoma , Humans , Glioblastoma/diagnostic imaging , Glioblastoma/pathology , Diagnostic Imaging , Organoids/pathology
3.
J Phys Chem Lett ; 15(5): 1382-1389, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38288689

ABSTRACT

Elucidating transport mechanisms is crucial for advancing material design, yet state-of-the-art theory is restricted to exact simulations of small lattices with severe finite-size effects or approximate ones that assume the nature of transport. We leverage algorithmic advances to tame finite-size effects and exactly simulate small polaron formation and transport in the Holstein model. We further analyze the applicability of the ubiquitously used equilibrium-based Green-Kubo relations and nonequilibrium methods to predict charge mobility. We find that these methods can converge to different values and track this disparity to finite-size dependence and the sensitivity of Green-Kubo relations to the system's topology. Contrary to standard perturbative calculations, our results demonstrate that small polarons exhibit anomalous transport that manifests transiently due to nonequilibrium lattice relaxation or permanently as a signature of immovable boundaries. These findings can offer new interpretations of transport experiments on polymers and transition metal oxides.

4.
J Chem Phys ; 160(4)2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38270238

ABSTRACT

Modern 4-wave mixing spectroscopies are expensive to obtain experimentally and computationally. In certain cases, the unfavorable scaling of quantum dynamics problems can be improved using a generalized quantum master equation (GQME) approach. However, the inclusion of multiple (light-matter) interactions complicates the equation of motion and leads to seemingly unavoidable cubic scaling in time. In this paper, we present a formulation that greatly simplifies and reduces the computational cost of previous work that extended the GQME framework to treat arbitrary numbers of quantum measurements. Specifically, we remove the time derivatives of quantum correlation functions from the modified Mori-Nakajima-Zwanzig framework by switching to a discrete-convolution implementation inspired by the transfer tensor approach. We then demonstrate the method's capabilities by simulating 2D electronic spectra for the excitation-energy-transfer dimer model. In our method, the resolution of data can be arbitrarily coarsened, especially along the t2 axis, which mirrors how the data are obtained experimentally. Even in a modest case, this demands O(103) fewer data points. We are further able to decompose the spectra into one-, two-, and three-time correlations, showing how and when the system enters a Markovian regime where further measurements are unnecessary to predict future spectra and the scaling becomes quadratic. This offers the ability to generate long-time spectra using only short-time data, enabling access to timescales previously beyond the reach of standard methodologies.

5.
bioRxiv ; 2024 Mar 12.
Article in English | MEDLINE | ID: mdl-37745583

ABSTRACT

Dingoes come from an ancient canid lineage that originated in East Asia around 8000-11,000 years BP. As Australia's largest terrestrial predator, dingoes play an important ecological role. A small, protected population exists on a world heritage listed offshore island, K'gari (formerly Fraser Island). Concern regarding the persistence of dingoes on K'gari has risen due to their low genetic diversity and elevated inbreeding levels. However, whole-genome sequencing data is lacking from this population. Here, we include five new whole-genome sequences of K'gari dingoes. We analyze a total of 18 whole genome sequences of dingoes sampled from mainland Australia and K'gari to assess the genomic consequences of their demographic histories. Long (>1 Mb) runs of homozygosity (ROH) - indicators of inbreeding - are elevated in all sampled dingoes. However, K'gari dingoes showed significantly higher levels of very long ROH (>5 Mb), providing genomic evidence for small population size, isolation, inbreeding, and a strong founder effect. Our results suggest that, despite current levels of inbreeding, the K'gari population is purging strongly deleterious mutations, which, in the absence of further reductions in population size, may facilitate the persistence of small populations despite low genetic diversity and isolation. However, there may be little to no purging of mildly deleterious alleles, which may have important long-term consequences, and should be considered by conservation and management programs.

6.
Cells ; 12(23)2023 11 27.
Article in English | MEDLINE | ID: mdl-38067143

ABSTRACT

Despite advances in chemotherapeutic drugs used against cervical cancer, available chemotherapy treatments adversely affect the patient's quality of life. For this reason, new molecules from natural sources with antitumor potential and few side effects are required. In previous research, Pllans-II, a phospholipase A2 type-Asp49 from Porthidium lansbergii lansbergii snake venom, has shown selective attack against the HeLa and Ca Ski cervical cancer cell lines. This work suggests that the cytotoxic effect generated by Pllans-II on HeLa cells is triggered without affecting the integrity of the cytoplasmic membrane or depolarizing the mitochondrial membranes. The results allow us to establish that cell death in HeLa is related to the junction blockage between α5ß1 integrins and fibronectin of the extracellular matrix. Pllans-II reduces the cells' ability of adhesion and affects survival and proliferation pathways mediated by intracellular communication with the external environment. Our findings confirmed Pllans-II as a potential prototype for developing a selective chemotherapeutic drug against cervical cancer.


Subject(s)
Antineoplastic Agents , Uterine Cervical Neoplasms , Female , Humans , Uterine Cervical Neoplasms/drug therapy , Cell Adhesion , HeLa Cells , Quality of Life , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Integrin alpha5beta1
7.
J Chem Phys ; 159(24)2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38153146

ABSTRACT

While dark transitions made bright by molecular motions determine the optoelectronic properties of many materials, simulating such non-Condon effects in condensed phase spectroscopy remains a fundamental challenge. We derive a Gaussian theory to predict and analyze condensed phase optical spectra beyond the Condon limit. Our theory introduces novel quantities that encode how nuclear motions modulate the energy gap and transition dipole of electronic transitions in the form of spectral densities. By formulating the theory through a statistical framework of thermal averages and fluctuations, we circumvent the limitations of widely used microscopically harmonic theories, allowing us to tackle systems with generally anharmonic atomistic interactions and non-Condon fluctuations of arbitrary strength. We show how to calculate these spectral densities using first-principles simulations, capturing realistic molecular interactions and incorporating finite-temperature, disorder, and dynamical effects. Our theory accurately predicts the spectra of systems known to exhibit strong non-Condon effects (phenolate in various solvents) and reveals distinct mechanisms for electronic peak splitting: timescale separation of modes that tune non-Condon effects and spectral interference from correlated energy gap and transition dipole fluctuations. We further introduce analysis tools to identify how intramolecular vibrations, solute-solvent interactions, and environmental polarization effects impact dark transitions. Moreover, we prove an upper bound on the strength of cross correlated energy gap and transition dipole fluctuations, thereby elucidating a simple condition that a system must follow for our theory to accurately predict its spectrum.

8.
Oncoimmunology ; 12(1): 2246319, 2023.
Article in English | MEDLINE | ID: mdl-37885970

ABSTRACT

Conventional CD4+ T (Tconv) lymphocytes play important roles in tumor immunity; however, their contribution to tumor elimination remains poorly understood. Here, we describe a subset of tumor-infiltrating Tconv cells characterized by the expression of CD39. In several mouse cancer models, we observed that CD39+ Tconv cells accumulated in tumors but were absent in lymphoid organs. Compared to tumor CD39- counterparts, CD39+ Tconv cells exhibited a cytotoxic and exhausted signature at the transcriptomic level, confirmed by high protein expression of inhibitory receptors and transcription factors related to the exhaustion. Additionally, CD39+ Tconv cells showed increased production of IFNγ, granzyme B, perforin and CD107a expression, but reduced production of TNF. Around 55% of OVA-specific Tconv from B16-OVA tumor-bearing mice, expressed CD39. In vivo CTLA-4 blockade induced the expansion of tumor CD39+ Tconv cells, which maintained their cytotoxic and exhausted features. In breast cancer patients, CD39+ Tconv cells were found in tumors and in metastatic lymph nodes but were less frequent in adjacent non-tumoral mammary tissue and not detected in non-metastatic lymph nodes and blood. Human tumor CD39+ Tconv cells constituted a heterogeneous cell population with features of exhaustion, high expression of inhibitory receptors and CD107a. We found that high CD4 and ENTPD1 (CD39) gene expression in human tumor tissues correlated with a higher overall survival rate in breast cancer patients. Our results identify CD39 as a biomarker of Tconv cells, with characteristics of both exhaustion and cytotoxic potential, and indicate CD39+ Tconv cells as players within the immune response against tumors.


Subject(s)
Antineoplastic Agents , Breast Neoplasms , Humans , Mice , Animals , Female , T-Lymphocytes, Regulatory/metabolism , CTLA-4 Antigen , CD4-Positive T-Lymphocytes , Breast Neoplasms/metabolism
9.
Sci Rep ; 13(1): 15068, 2023 09 12.
Article in English | MEDLINE | ID: mdl-37699960

ABSTRACT

New information on the intensive care applications of new generation 'high-density data clinical information systems' (HDDCIS) is increasingly being published in the academic literature. HDDCIS avoid data loss from bedside equipment and some provide vital signs statistical calculations to promote quick and easy evaluation of patient information. Our objective was to study whether manual records of continuously monitored vital signs in the Paediatric Intensive Care Unit could be replaced by these statistical calculations. Here we conducted a prospective observational clinical study in paediatric patients with severe diabetic ketoacidosis, using a Medlinecare® HDDCIS, which collects information from bedside equipment (1 data point per parameter, every 3-5 s) and automatically provides hourly statistical calculations of the central trend and sample dispersion. These calculations were compared with manual hourly nursing records for patient heart and respiratory rates and oxygen saturation. The central tendency calculations showed identical or remarkably similar values and strong correlations with manual nursing records. The sample dispersion calculations differed from the manual references and showed weaker correlations. We concluded that vital signs calculations of central tendency can replace manual records, thereby reducing the bureaucratic burden of staff. The significant sample dispersion calculations variability revealed that automatic random measurements must be supervised by healthcare personnel, making them inefficient.


Subject(s)
Clinical Relevance , Diabetic Ketoacidosis , Humans , Child , Respiratory Rate , Critical Care , Information Systems
10.
J Phys Chem Lett ; 14(29): 6610-6619, 2023 Jul 27.
Article in English | MEDLINE | ID: mdl-37459252

ABSTRACT

Hydrogen bonding interactions with chromophores in chemical and biological environments play a key role in determining their electronic absorption and relaxation processes, which are manifested in their linear and multidimensional optical spectra. For chromophores in the condensed phase, the large number of atoms needed to simulate the environment has traditionally prohibited the use of high-level excited-state electronic structure methods. By leveraging transfer learning, we show how to construct machine-learned models to accurately predict the high-level excitation energies of a chromophore in solution from only 400 high-level calculations. We show that when the electronic excitations of the green fluorescent protein chromophore in water are treated using EOM-CCSD embedded in a DFT description of the solvent the optical spectrum is correctly captured and that this improvement arises from correctly treating the coupling of the electronic transition to electric fields, which leads to a larger response upon hydrogen bonding between the chromophore and water.


Subject(s)
Machine Learning , Water , Green Fluorescent Proteins/chemistry , Hydrogen Bonding , Water/chemistry , Spectrum Analysis
12.
Nano Lett ; 23(13): 6035-6041, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37311112

ABSTRACT

Monolayer transition-metal dichalcogenides (ML-TMDs) have the potential to unlock novel photonic and chemical technologies if their optoelectronic properties can be understood and controlled. Yet, recent work has offered contradictory explanations for how TMD absorption spectra change with carrier concentration, fluence, and time. Here, we test our hypothesis that the large broadening and shifting of the strong band-edge features observed in optical spectra arise from the formation of negative trions. We do this by fitting an ab initio based, many-body model to our experimental electrochemical data. Our approach provides an excellent, global description of the potential-dependent linear absorption data. We further leverage our model to demonstrate that trion formation explains the nonmonotonic potential dependence of the transient absorption spectra, including through photoinduced derivative line shapes for the trion peak. Our results motivate the continued development of theoretical methods to describe cutting-edge experiments in a physically transparent way.

13.
Proc Natl Acad Sci U S A ; 120(15): e2220333120, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37011201

ABSTRACT

Hot carrier-based energy conversion systems could double the efficiency of conventional solar energy technology or drive photochemical reactions that would not be possible using fully thermalized, "cool" carriers, but current strategies require expensive multijunction architectures. Using an unprecedented combination of photoelectrochemical and in situ transient absorption spectroscopy measurements, we demonstrate ultrafast (<50 fs) hot exciton and free carrier extraction under applied bias in a proof-of-concept photoelectrochemical solar cell made from earth-abundant and potentially inexpensive monolayer (ML) MoS2. Our approach facilitates ultrathin 7 Å charge transport distances over 1 cm2 areas by intimately coupling ML-MoS2 to an electron-selective solid contact and a hole-selective electrolyte contact. Our theoretical investigations of the spatial distribution of exciton states suggest greater electronic coupling between hot exciton states located on peripheral S atoms and neighboring contacts likely facilitates ultrafast charge transfer. Our work delineates future two-dimensional (2D) semiconductor design strategies for practical implementation in ultrathin photovoltaic and solar fuel applications.

14.
J Am Chem Soc ; 145(18): 9916-9927, 2023 05 10.
Article in English | MEDLINE | ID: mdl-37104720

ABSTRACT

Conformational changes underpin function and encode complex biomolecular mechanisms. Gaining atomic-level detail of how such changes occur has the potential to reveal these mechanisms and is of critical importance in identifying drug targets, facilitating rational drug design, and enabling bioengineering applications. While the past two decades have brought Markov state model techniques to the point where practitioners can regularly use them to glimpse the long-time dynamics of slow conformations in complex systems, many systems are still beyond their reach. In this Perspective, we discuss how including memory (i.e., non-Markovian effects) can reduce the computational cost to predict the long-time dynamics in these complex systems by orders of magnitude and with greater accuracy and resolution than state-of-the-art Markov state models. We illustrate how memory lies at the heart of successful and promising techniques, ranging from the Fokker-Planck and generalized Langevin equations to deep-learning recurrent neural networks and generalized master equations. We delineate how these techniques work, identify insights that they can offer in biomolecular systems, and discuss their advantages and disadvantages in practical settings. We show how generalized master equations can enable the investigation of, for example, the gate-opening process in RNA polymerase II and demonstrate how our recent advances tame the deleterious influence of statistical underconvergence of the molecular dynamics simulations used to parameterize these techniques. This represents a significant leap forward that will enable our memory-based techniques to interrogate systems that are currently beyond the reach of even the best Markov state models. We conclude by discussing some current challenges and future prospects for how exploiting memory will open the door to many exciting opportunities.


Subject(s)
Bioengineering , Drug Delivery Systems , Drug Design , Heart , Molecular Dynamics Simulation
15.
J Chem Phys ; 158(9): 094112, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36889969

ABSTRACT

The dynamics of many-body fermionic systems are important in problems ranging from catalytic reactions at electrochemical surfaces to transport through nanojunctions and offer a prime target for quantum computing applications. Here, we derive the set of conditions under which fermionic operators can be exactly replaced by bosonic operators that render the problem amenable to a large toolbox of dynamical methods while still capturing the correct dynamics of n-body operators. Importantly, our analysis offers a simple guide on how one can exploit these simple maps to calculate nonequilibrium and equilibrium single- and multi-time correlation functions essential in describing transport and spectroscopy. We use this to rigorously analyze and delineate the applicability of simple yet effective Cartesian maps that have been shown to correctly capture the correct fermionic dynamics in select models of nanoscopic transport. We illustrate our analytical results with exact simulations of the resonant level model. Our work provides new insights as to when one can leverage the simplicity of bosonic maps to simulate the dynamics of many-electron systems, especially those where an atomistic representation of nuclear interactions becomes essential.

16.
Proc Natl Acad Sci U S A ; 120(12): e2221048120, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36920924

ABSTRACT

The ability to predict and understand complex molecular motions occurring over diverse timescales ranging from picoseconds to seconds and even hours in biological systems remains one of the largest challenges to chemical theory. Markov state models (MSMs), which provide a memoryless description of the transitions between different states of a biochemical system, have provided numerous important physically transparent insights into biological function. However, constructing these models often necessitates performing extremely long molecular simulations to converge the rates. Here, we show that by incorporating memory via the time-convolutionless generalized master equation (TCL-GME) one can build a theoretically transparent and physically intuitive memory-enriched model of biochemical processes with up to a three order of magnitude reduction in the simulation data required while also providing a higher temporal resolution. We derive the conditions under which the TCL-GME provides a more efficient means to capture slow dynamics than MSMs and rigorously prove when the two provide equally valid and efficient descriptions of the slow configurational dynamics. We further introduce a simple averaging procedure that enables our TCL-GME approach to quickly converge and accurately predict long-time dynamics even when parameterized with noisy reference data arising from short trajectories. We illustrate the advantages of the TCL-GME using alanine dipeptide, the human argonaute complex, and FiP35 WW domain.


Subject(s)
Dipeptides , Molecular Dynamics Simulation , Humans , Markov Chains
17.
J Chem Phys ; 158(7): 074107, 2023 Feb 21.
Article in English | MEDLINE | ID: mdl-36813724

ABSTRACT

Linear and nonlinear electronic spectra provide an important tool to probe the absorption and transfer of electronic energy. Here, we introduce a pure state Ehrenfest approach to obtain accurate linear and nonlinear spectra that is applicable to systems with large numbers of excited states and complex chemical environments. We achieve this by representing the initial conditions as sums of pure states and unfolding multi-time correlation functions into the Schrödinger picture. By doing this, we show that one can obtain significant improvements in accuracy over the previously used projected Ehrenfest approach and that these benefits are particularly pronounced in cases where the initial condition is a coherence between excited states. While such initial conditions do not arise when calculating linear electronic spectra, they play a vital role in capturing multidimensional spectroscopies. We demonstrate the performance of our method by showing that it is able to quantitatively capture the exact linear, 2D electronic spectroscopy, and pump-probe spectra for a Frenkel exciton model in slow bath regimes and is even able to reproduce the main spectral features in fast bath regimes.

18.
J Chem Phys ; 158(1): 014105, 2023 Jan 07.
Article in English | MEDLINE | ID: mdl-36610963

ABSTRACT

Generalized master equations provide a theoretically rigorous framework to capture the dynamics of processes ranging from energy harvesting in plants and photovoltaic devices to qubit decoherence in quantum technologies and even protein folding. At their center is the concept of memory. The explicit time-nonlocal description of memory is both protracted and elaborate. When physical intuition is at a premium, one would desire a more compact, yet complete, description. Here, we demonstrate how and when the time-convolutionless formalism constitutes such a description. In particular, by focusing on the dissipative dynamics of the spin-boson and Frenkel exciton models, we show how to: easily construct the time-local generator from reference reduced dynamics, elucidate the dependence of its existence on the system parameters and the choice of reduced observables, identify the physical origin of its apparent divergences, and offer analysis tools to diagnose their severity and circumvent their deleterious effects. We demonstrate that, when applicable, the time-local approach requires as little information as the more commonly used time-nonlocal scheme, with the important advantages of providing a more compact description, greater algorithmic simplicity, and physical interpretability. We conclude by introducing the discrete-time analog and a straightforward protocol to employ it in cases where the reference dynamics have limited resolution. The insights we present here offer the potential for extending the reach of dynamical methods, reducing both their cost and conceptual complexity.


Subject(s)
Protein Folding
19.
PeerJ ; 10: e14425, 2022.
Article in English | MEDLINE | ID: mdl-36518292

ABSTRACT

The optimization of resources for research in developing countries forces us to consider strategies in the wet lab that allow the reuse of molecular biology reagents to reduce costs. In this study, we used linear regression as a method for predictive modeling of coverage depth given the number of MinION reads sequenced to define the optimum number of reads necessary to obtain >200X coverage depth with a good lineage-clade assignment of SARS-CoV-2 genomes. The research aimed to create and implement a model based on machine learning algorithms to predict different variables (e.g., coverage depth) given the number of MinION reads produced by Nanopore sequencing to maximize the yield of high-quality SARS-CoV-2 genomes, determine the best sequencing runtime, and to be able to reuse the flow cell with the remaining nanopores available for sequencing in a new run. The best accuracy was -0.98 according to the R squared performance metric of the models. A demo version is available at https://genomicdashboard.herokuapp.com/.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Sequence Analysis, DNA/methods , SARS-CoV-2/genetics , High-Throughput Nucleotide Sequencing/methods , Genome
20.
Article in Spanish | LILACS | ID: biblio-1418763

ABSTRACT

El término BRUE describe un evento en un lactante menor, repentino, breve, ya resuelto y sólo aplica cuando no existe una explicación para este episodio. Es escasa la literatura nacional e internacional sobre el estudio etiológico en BRUE. Objetivos: Caracterizar lactantes con episodio de BRUE y hacer un análisis etiológico. Métodos: Estudio retrospectivo, descriptivo lactantes hospitalizados por BRUE. Resultados: Se encontraron 50 lactantes con BRUE, la mayoría de ellos presentó un solo evento y ninguno requirió reanimación cardiopulmonar. Las características principales de los eventos fueron apnea, cianosis y tono disminuido. Las etiologías encontradas, más habituales, fueron reflujo gastro-esofágico, infección respiratoria, mala técnica alimentaria y crisis epilépticas. La evaluación clínica fue el principal elemento diagnóstico. Discusión: Nuestro análisis etiológico concuerda con la literatura nacional e internacional. La anamnesis y examen físico son la principal herramienta diagnóstica. Es fundamental contar con guías, adaptadas a la realidad nacional y local, que dirijan el estudio de lactantes con BRUE.


BRUE is an event occurring in an infant when the observer reports a sudden, brief, and now-resolved episode. BRUE is a diagnosis of exclusion and is used only when there is no explanation for the event after conducting an appropriate history and physical examination. There is little literature on the etiological study in BRUE. Objectives: To characterize infants with a BRUE episode and to carry out an etiological analysis. Methods: A retrospective study including infants who have experienced a BRUE between the years 2017 to 2020. Results: 50 infants with BRUE, most of them presented a single event and none required cardiopulmonary resuscitation. The main characteristics of the events were apnea, cyanosis and decreased tone. The most common etiologies found were gastroesophageal reflux, respiratory infection, poor feeding technique, and seizures. History and physical examination are the fundamental diagnostic tools. Discussion: Our etiological analysis agrees with the national and international literature. The clinical evaluation was the main diagnostic tool. It is essential to create local guidelines for the evaluation investigation and management of infants with BRUE.


Subject(s)
Humans , Male , Female , Infant, Newborn , Infant , Brief, Resolved, Unexplained Event/etiology , Apnea/complications , Gastroesophageal Reflux/complications , Retrospective Studies , Epilepsy/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...