Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
J Nat Prod ; 87(4): 783-797, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38537009

ABSTRACT

Waixenicin A, a xenicane diterpene from the octocoral Sarcothelia edmondsoni, is a selective, potent inhibitor of the TRPM7 ion channel. To study the structure-activity relationship (SAR) of waixenicin A, we isolated and assayed related diterpenes from S. edmondsoni. In addition to known waixenicins A (1) and B (2), we purified six xenicane diterpenes, 7S,8S-epoxywaixenicins A (3) and B (4), 12-deacetylwaixenicin A (5), waixenicin E (6), waixenicin F (7), and 20-acetoxyxeniafaraunol B (8). We elucidated the structures of 3-8 by NMR and MS analyses. Compounds 1, 2, 3, 4, and 6 inhibited TRPM7 activity in a cell-based assay, while 5, 7, and 8 were inactive. A preliminary SAR emerged showing that alterations to the nine-membered ring of 1 did not reduce activity, while the 12-acetoxy group, in combination with the dihydropyran, appears to be necessary for TRPM7 inhibition. The bioactive compounds are proposed to be latent electrophiles by formation of a conjugated oxocarbenium ion intermediate. Whole-cell patch-clamp experiments demonstrated that waixenicin A inhibition is irreversible, consistent with a covalent inhibitor, and showed nanomolar potency for waixenicin B (2). Conformational analysis (DFT) of 1, 3, 7, and 8 revealed insights into the conformation of waixenicin A and congeners and provided information regarding the stabilization of the proposed pharmacophore.


Subject(s)
Acetates , Anthozoa , Diterpenes , Protein Serine-Threonine Kinases , TRPM Cation Channels , Animals , Humans , Anthozoa/chemistry , Diterpenes/pharmacology , Diterpenes/chemistry , Diterpenes/isolation & purification , Molecular Conformation , Molecular Structure , Structure-Activity Relationship , TRPM Cation Channels/antagonists & inhibitors
2.
J Biomol Screen ; 15(5): 498-507, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20413646

ABSTRACT

TRPM7 is a ubiquitously expressed and constitutively active divalent cation channel essential for cell survival and proliferation because it provides a mechanism for Mg2+ entry. This makes the channel an attractive target for proliferative diseases. In keeping with its role in Mg2+ homeostasis, TRPM7 is inhibited by intracellular Mg2+ and Mg-ATP. TRPM7 has been implicated in anoxia-mediated cell death following brain ischemia. Despite its critical role in ischemic cell death and cell proliferation, there are no reports of selective inhibitors of TRPM7. The authors developed and optimized a fluorescent dye-based bioassay measuring the fluorescence quench of fura-2 by TRPM7-mediated Mn2+ influx in HEK293 cells that stably overexpress TRPM7. The following bioassay conditions were evaluated: (a) cell density, (b) dye loading conditions, (c) bioassay temperature, (d) concentration of the fura-2 quenching agent Mn2+, and (e) concentration of vehicle solvent. The bioassay was validated by measuring the effects of the known (nonselective) inhibitor 2-APB and La3+ on Mn2+ influx, and furthermore, the performance of the assay was evaluated by screening a subset of a marine bacteria-derived extract library. The quality of the bioassay window is excellent based on an established statistical parameter used to evaluate high-throughput screening window quality (Z and Z' factors > or =0.5).


Subject(s)
High-Throughput Screening Assays/methods , TRPM Cation Channels/antagonists & inhibitors , Animals , Cell Line , Fluorescent Dyes/metabolism , Fura-2/analogs & derivatives , Fura-2/metabolism , High-Throughput Screening Assays/standards , Humans , Magnesium/metabolism , Manganese/metabolism , Patch-Clamp Techniques , Poloxamer/metabolism , Probenecid/metabolism , Protein Serine-Threonine Kinases , Reproducibility of Results , Surface-Active Agents/metabolism , Uricosuric Agents/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL