Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
PLoS Negl Trop Dis ; 18(7): e0012301, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38968299

ABSTRACT

Access to antivenoms in cases of snakebite continues to be an important public health issue around the world, especially in rural areas with poorly developed health care systems. This study aims to evaluate therapeutic itineraries and antivenom accessibility following snakebites in the states of Oaxaca and Chiapas in southern Mexico. Employing an intercultural health approach that seeks to understand and bridge allopathic and traditional medical perceptions and practices, we conducted field interviews with 47 snakebite victims, documenting the therapeutic itineraries of 54 separate snakebite incidents that occurred between 1977 and 2023. Most victims used traditional remedies as a first line of treatment, often to withstand the rigors of a long journey to find antivenoms. The main obstacles to antivenom access were distance, poor antivenom availability, and cost. Standard antivenom treatment is highly valued and sought after, even as traditional beliefs and practices persist within a cultural framework known as the "hot-cold" system. The findings are crucial for informing future enhancements to antivenom distribution systems, health education initiatives, and other interventions aimed at mitigating the impact of snakebites in the region.


Subject(s)
Antivenins , Health Services Accessibility , Snake Bites , Snake Bites/therapy , Snake Bites/drug therapy , Snake Bites/epidemiology , Humans , Mexico/epidemiology , Antivenins/therapeutic use , Male , Female , Adult , Middle Aged , Adolescent , Young Adult , Aged
2.
Article in English | MEDLINE | ID: mdl-39025425

ABSTRACT

In this study, we report the innovative application of whole-cell patch-clamp electrophysiology in assessing broad-spectrum neutralisation by three different antivenoms, of venoms from the medically significant scorpion genus Centruroides. Envenomations by as many as 21 species from the Centruroides genus result in up to 300,000 envenomations per year in Mexico, which poses significant and potentially life-threatening pathophysiology. We first evaluated the in vitro manifestation of envenomation against two human voltage-gated sodium (hNaV) channel subtypes: hNaV1.4 and hNaV1.5, which are primarily expressed in skeletal muscles and cardiomyocytes, respectively. The neutralisation of venom activity was then characterised for three different antivenoms using a direct competition model against the more potent target, hNaV1.4. While broad-spectrum neutralisation was identified, variation in neutralisation arose for Centruroides elegans, C. limpidus, C. noxius and C. suffusus venoms, despite the presence of a number of these venoms within the immunising mixture. This raises questions regarding the truly "broad" neutralisation capacity of the antivenoms. This study not only extends previous validation of the in vitro investigation of antivenom efficacy utilising the whole-cell patch-clamp technique but also underscores the potential of this animal-free model in exploring cross-reactivity, experimental scalability, and most importantly, informing clinical management practices regarding the administration of antivenom in Mexico.


Subject(s)
Antivenins , Scorpion Venoms , Scorpions , Animals , Scorpion Venoms/toxicity , Antivenins/pharmacology , Humans , Scorpion Stings/drug therapy , Patch-Clamp Techniques , Species Specificity , Mexico , Animals, Poisonous
3.
Biochimie ; 225: 81-88, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38762000

ABSTRACT

The genus Mixcoatlus is composed of three species: Mixcoatlus barbouri, M. browni, and M. melanurus, of which the venom composition of M. melanurus, the most common species of the three, has only recently been described. However, very little is known about the natural history of M. barbouri and M. browni, and the venom composition of these two species has remained thus far unexplored. In this study we characterize the proteomic profiles and the main biochemical and toxic activities of these two venoms. Proteomic data obtained by shotgun analysis of whole venom identified 12 protein families for M. barbouri, and 13 for M. browni. The latter venom was further characterized by using a quantitative 'venomics' protocol, which revealed that it is mainly composed of 51.1 % phospholipases A2 (PLA2), 25.5 % snake venom serine proteases (SVSP), 4.6 % l-amino oxidases (LAO), and 3.6 % snake venom metalloproteases (SVMP), with lower percentages other six protein families. Both venoms contained homologs of the basic and acidic subunits of crotoxin. However, due to limitations in M. barbouri venom availability, we could only characterize the crotoxin-like protein of M. browni venom, which we have named Mixcoatlutoxin. It exhibited a lethal potency in mice like that described for classical rattlesnake crotoxins. These findings expand knowledge on the distribution of crotoxin-like heterodimeric proteins in viper snake species. Further investigation of the bioactivities of the venom of M. barbouri, on the other hand, remains necessary.


Subject(s)
Crotoxin , Animals , Mice , Crotoxin/chemistry , Crotoxin/genetics , Phospholipases A2/metabolism , Phospholipases A2/genetics , Phospholipases A2/chemistry , Proteomics/methods , Mexico , Species Specificity , Crotalid Venoms/chemistry
4.
Toxicon ; 244: 107756, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38740096

ABSTRACT

Despite a recent surge in high-throughput venom research that has enabled many species to be studied, some snake venoms remain understudied. The long-tailed rattlesnakes (Crotalus ericsmithi, C. lannomi, and C. stejnegeri) are one group where such research lags, largely owing to the rarity of these snakes and the hazardous areas, ripe with drug (marijuana and opium) production, they inhabit in Mexico. To fill this knowledge gap, we used multiple functional assays to examine the coagulotoxic (including across different plasma types), neurotoxic, and myotoxic activity of the venom of the long-tailed rattlesnakes. All crude venoms were shown to be potently anticoagulant on human plasma, which we discovered was not due to the destruction of fibrinogen, except for C. stejnegeri displaying minor fibrinogen destruction activity. All venoms exhibited anticoagulant activity on rat, avian, and amphibian plasmas, with C. ericsmithi being the most potent. We determined the mechanism of anticoagulant activity by C. ericsmithi and C. lannomi venoms to be phospholipid destruction and inhibition of multiple coagulation factors, leading to a net disruption of the clotting cascade. In the chick biventer assay, C. ericsmithi and C. lannomi did not exhibit neurotoxic activity but displayed potential weak myotoxic activity. BIRMEX® (Faboterápico Polivalente Antiviperino) antivenom was not effective in neutralising this venom effect. Overall, this study provides an in-depth investigation of venom function of understudied long-tailed rattlesnakes and provides a springboard for future venom and ecology research on the group.


Subject(s)
Anticoagulants , Crotalid Venoms , Crotalus , Animals , Crotalid Venoms/toxicity , Humans , Anticoagulants/pharmacology , Cannabis/chemistry , Rats , Blood Coagulation/drug effects , Mexico
5.
PLoS Negl Trop Dis ; 18(5): e0012152, 2024 May.
Article in English | MEDLINE | ID: mdl-38717980

ABSTRACT

BACKGROUND: Each year, 3,800 cases of snakebite envenomation are reported in Mexico, resulting in 35 fatalities. The only scientifically validated treatment for snakebites in Mexico is the use of antivenoms. Currently, two antivenoms are available in the market, with one in the developmental phase. These antivenoms, produced in horses, consist of F(ab')2 fragments generated using venoms from various species as immunogens. While previous studies primarily focused on neutralizing the venom of the Crotalus species, our study aims to assess the neutralization capacity of different antivenom batches against pit vipers from various genera in Mexico. METHODOLOGY: We conducted various biological and biochemical tests to characterize the venoms. Additionally, we performed neutralization tests using all three antivenoms to evaluate their effectiveness against lethal activity and their ability to neutralize proteolytic and fibrinogenolytic activities. RESULTS: Our results reveal significant differences in protein content and neutralizing capacity among different antivenoms and even between different batches of the same product. Notably, the venom of Crotalus atrox is poorly neutralized by all evaluated batches despite being the primary cause of envenomation in the country's northern region. Furthermore, even at the highest tested concentrations, no antivenom could neutralize the lethality of Metlapilcoatlus nummifer and Porthidium yucatanicum venoms. These findings highlight crucial areas for improving existing antivenoms and developing new products. CONCLUSION: Our research reveals variations in protein content and neutralizing potency among antivenoms, emphasizing the need for consistency in venom characteristics as immunogens. While Birmex neutralizes more LD50 per vial, Antivipmyn excels in specific neutralization. The inability of antivenoms to neutralize certain venoms, especially M. nummifer and P. yucatanicum, highlights crucial improvement opportunities, given the medical significance of these species.


Subject(s)
Antivenins , Neutralization Tests , Antivenins/pharmacology , Antivenins/immunology , Animals , Mexico , Snake Bites/drug therapy , Snake Bites/immunology , Viperidae , Crotalus , Crotalid Venoms/immunology
6.
Toxicon ; 240: 107658, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38395261

ABSTRACT

Our study quantifies venom production in nine Mexican coral snake species (Micrurus), encompassing 76 specimens and 253 extractions. Noteworthy variations were observed, with M. diastema and M. laticollaris displaying diverse yields, ranging from 0.3 mg to 59 mg. For animals for which we have length data, there is a relationship between size and venom quantity. Twenty-eight percent of the observed variability in venom production can be explained by snake size, suggesting that other factors influence the amount of obtained venom. These findings are pivotal for predicting venom effects and guiding antivenom interventions. Our data offer insights into Micrurus venom yields, laying the groundwork for future research and aiding in medical response strategies. This study advances understanding coral snake venom production, facilitating informed medical responses to coral snake bites.


Subject(s)
Anthozoa , Coral Snakes , Snake Bites , Animals , Mexico , Elapid Venoms , Antivenins , Elapidae
7.
Biochimie ; 216: 160-174, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37890695

ABSTRACT

Crotalus culminatus is a medically significant species of rattlesnake in Mexico [1]. While the proteomic composition of its venom has been previously reported for both juvenile and adult specimens, there has been limited research into its functional properties, with only a few studies, including one focusing on coagulotoxicity mechanisms. In this study, we aimed to compare the biochemical and biological activities of the venom of juvenile and adult snakes. Additionally, we assessed antibody production using the venoms of juveniles and adults as immunogens in rabbits. Our findings reveal lethality and proteolytic activity differences between the venoms of juveniles and adults. Notably, juvenile venoms exhibited high proportions of crotamine, while adult venoms displayed a reduction of this component. A commercially available antivenom demonstrated effective neutralization of lethality of both juvenile and adult venoms in mice. However, it failed to neutralize the paralytic activity induced by crotamine, which, in contrast, was successfully inhibited by antibodies obtained from hyperimmunized rabbits. These results suggest the potential inclusion of C. culminatus venom from juveniles in commercial antivenom immunization schemes to generate antibodies targeting this small myotoxin.


Subject(s)
Antivenins , Crotalid Venoms , Rabbits , Animals , Mice , Antivenins/pharmacology , Crotalus , Proteomics , Crotalid Venoms/toxicity , Crotalid Venoms/chemistry , Neurotoxins , Mexico
8.
Urol Case Rep ; 51: 102568, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37781485

ABSTRACT

Background: Malakoplakia is a rare disorder 75% of the reported cases affect mainly the genitourinary tract, its occurrence in the adrenal gland is extremely rare. Case presentation: A 65-year-old female patient presented to the emergency department for chronic abdominal pain. Radiographic and biochemical studies revealed a left adrenal incidentaloma and left adrenalectomy was performed. Histological examination showed the presence of Michaelis-Gutmann bodies, compatible with a malakoplakia of the adrenal gland. Conclusions: Malakoplakia is a rare disorder, with non-standardized treatment, medical and surgical therapies appear to be effective in treating the condition.

9.
Toxicon ; 234: 107280, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37673344

ABSTRACT

To corroborate the ontogenetic shift in the venom composition of the Mexican Black-tailed Rattlesnake (Crotalus molossus nigrescens) previously reported through the census approach, we evaluated the shift in the protein profile, lethality, and proteolytic and phospholipase activities of four venom samples obtained in 2015, 2018, 2019, and 2021 from one C. m. nigrescens individual (CMN06) collected in Durango, Mexico. We demonstrated that the venom of C. m. nigrescens changed from a myotoxin-rich venom to a phospholipase A2 and snake venom metalloproteinase-rich venom. Additionally, the proteolytic and phospholipase activities increased with age, but the lethality decreased approximately three times.

10.
Toxins (Basel) ; 15(8)2023 08 02.
Article in English | MEDLINE | ID: mdl-37624244

ABSTRACT

The distribution and relative potency of post-synaptic neurotoxic activity within Crotalinae venoms has been the subject of less investigation in comparison with Elapidae snake venoms. No previous studies have investigated post-synaptic neurotoxic activity within the Atropoides, Metlapilcoatlus, Cerrophidion, and Porthidium clade. Given the specificity of neurotoxins to relevant prey types, we aimed to uncover any activity present within this clade of snakes that may have been overlooked due to lower potency upon humans and thus not appearing as a clinical feature. Using biolayer interferometry, we assessed the relative binding of crude venoms to amphibian, lizard, bird, rodent and human α-1 nAChR orthosteric sites. We report potent alpha-1 orthosteric site binding in venoms from Atropoides picadoi, Metlapilcoatlus occiduus, M. olmec, M. mexicanus, M. nummifer. Lower levels of binding, but still notable, were evident for Cerrophidion godmani, C. tzotzilorum and C. wilsoni venoms. No activity was observed for Porthidium venoms, which is consistent with significant alpha-1 orthosteric site neurotoxicity being a trait that was amplified in the last common ancestor of Atropoides/Cerrophidion/Metlapilcoatlus subsequent to the split by Porthidium. We also observed potent taxon-selective activity, with strong selection for non-mammalian targets (amphibian, lizard, and bird). As these are poorly studied snakes, much of what is known about them is from clinical reports. The lack of affinity towards mammalian targets may explain the knowledge gap in neurotoxic activity within these species, since symptoms would not appear in bite reports. This study reports novel venom activity, which was previously unreported, indicating toxins that bind to post-synaptic receptors may be more widespread in pit vipers than previously considered. While these effects appear to not be clinically significant due to lineage-specific effects, they are of significant evolutionary novelty and of biodiscovery interest. This work sets the stage for future research directions, such as the use of in vitro and in vivo models to determine whether the alpha-1 orthosteric site binding observed within this study confers neurotoxic venom activity.


Subject(s)
Bothrops , Crotalid Venoms , Crotalinae , Lizards , Neurotoxicity Syndromes , Humans , Animals , Biological Evolution , Elapid Venoms , Central America , Mammals
11.
Pathogens ; 11(12)2022 Nov 23.
Article in English | MEDLINE | ID: mdl-36558732

ABSTRACT

BACKGROUND: Emphysematous pyelonephritis (EPN) is a necrotizing infection of the kidney and surrounding tissues with significant mortality. We aimed to assess the clinical factors and their influence on prognosis in patients being managed for EPN with and without ESBL-producing bacteria and to identify if those with EPN due to ESBL infections fared any different. METHODS: A retrospective analysis was performed on patients with EPN diagnosis from 22 centers across 11 countries (between 2013 and 2020). Demographics, clinical presentation, biochemical parameters, radiological features, microbiological characteristics, and therapeutic management were assessed. Univariable and multivariable analyses were performed to determine the independent variables associated with ESBL pathogens. A comparison of ESBL and non-ESBL mortality was performed evaluating treatment modality. RESULTS: A total of 570 patients were included. Median (IQR) age was 57 (47-65) years. Among urine cultures, the most common isolated pathogen was Escherichia coli (62.2%). ESBL-producing agents were present in 291/556 urine cultures (52.3%). In multivariable analysis, thrombocytopenia (OR 1.616 95% CI 1.081-2.413, p = 0.019), and Huang-Tseng type 4 (OR 1.948 95% CI 1.005-3.778, p= 0.048) were independent predictors of ESBL pathogens. Patients with Huang-Tseng Scale type 1 had 55% less chance of having ESBL-producing pathogens (OR 1.616 95% CI 1.081-2.413, p = 0.019). Early nephrectomy (OR 2.3, p = 0.029) and delayed nephrectomy (OR 2.4, p = 0.015) were associated with increased mortality in patients with ESBL infections. Conservative/minimally invasive management reported an inverse association with mortality (OR 0.314, p = 0.001). CONCLUSIONS: ESBL bacteria in EPN were not significantly associated with mortality in EPN. However, ESBL infections were associated with poor prognosis when patients underwent nephrectomy compared conservative/minimally invasive management.

12.
Biochimie ; 202: 226-236, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36057372

ABSTRACT

The most enigmatic group of rattlesnakes is the long-tailed rattlesnake group, consisting of three species: Crotalus ericsmithi, Crotalus lannomi and Crotalus stejnegeri. These species have been the least studied rattlesnakes in all aspects, and no study on the characterization of their venoms has been carried out to date. Our main objective was to investigate the proteomic composition, as well as some of the biochemical and toxic activities of these venoms, and their neutralization by commercial antivenom. The venom proteome of C. ericsmithi mainly contains metalloproteinases (SVMP; 49.3%), phospholipases A2 (PLA2; 26.2%), disintegrins (Dis; 12.6%), and snake venom serine proteases (SVSP; 6.8%), while C. lannomi venom mainly consists of SVMP (47.1%), PLA2 (19.3%), Dis (18.9%), SVSP (6%) and l-amino acid oxidase (LAAO; 2.6%). For these venoms high lethality was recorded in mice, the most potent being that of C. lannomi (LD50 of 0.99 µg/g body weight), followed by C. ericsmithi (1.30 µg/g) and finally C. stejnegeri (1.79 µg/g). The antivenoms Antivipmyn® from SILANES and Fabotherapic polyvalent antiviperin® from BIRMEX neutralized the lethal activity of the three venoms. Although this group of snakes is phylogenetically related to the C. viridis group, no neurotoxic components (crotoxin or crotoxin-like proteins) common in rattlesnakes were found in their venoms. This study expands current knowledge on the venoms of understudied snake species of the Mexican herpetofauna.


Subject(s)
Crotalus , Crotoxin , Animals , Mice , Venoms , Proteomics , Proteome
13.
Toxins (Basel) ; 14(8)2022 08 02.
Article in English | MEDLINE | ID: mdl-36006194

ABSTRACT

Biochemical and biological differences in the venom of Crotalus durissus cumanensis from three ecoregions of Colombia were evaluated. Rattlesnakes were collected from the geographic areas of Magdalena Medio (MM), Caribe (CA) and Orinoquía (OR). All three regionally distributed venoms contain proteases, PLA2s and the basic subunit of crotoxin. However, only crotamine was detected in the CA venom. The highest lethality, coagulant, phospholipase A2 and hyaluronidase activities were found in the MM venom. Also, some differences, observed by western blot and immunoaffinity, were found in all three venoms when using commercial antivenoms. Furthermore, all three eco-regional venoms showed intraspecific variability, considering the differences in the abundance and intensity of their components, in addition to the activity and response to commercial antivenoms.


Subject(s)
Crotalid Venoms , Crotoxin , Animals , Antivenins , Colombia , Crotalus , Phospholipases A2
14.
Biochimie ; 201: 55-62, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35781049

ABSTRACT

Alpha-latrotoxin (ɑLTx) is the component responsible for causing the pathophysiology in patients bitten by spiders from the genus Latrodectus, commonly known as black widow spiders. The current antivenom used to treat these envenomations in Mexico is produced using the venom of thousands of spiders, obtained through electrical stimulation. This work aimed to produce this protein as well as two of its fragments in a bacterial model, to evaluate their use as immunogens to produce neutralizing hyperimmune sera, in rabbits. ɑLTx is a 130 kDa protein which has not yet been obtained in a soluble active form using bacterial models. In the present work, ɑLTx and two of its fragments, ankyrin domain and amino terminal domain (LTxAnk and LTxNT) were produced in bacteria and solubilized from inclusion bodies using N-lauroyl sarcosine. These three proteins were used for hyperimmunization in order to evaluate their potential as immunogens for the production of neutralizing hyperimmune sera against the complete venom of Latrodectus mactans. The hyperimmune sera obtained using the complete ɑLTx as well as the LTxNT, was capable of preventing death of mice envenomated with 3 LD50s of venom, both in preincubation and rescue experiments. Conversely, the serum obtained using the LTxAnk fragment, generated only partial protection and a delay in the time of death, even with a maximum dose of 450 µL. We therefore conclude that the produced proteins show great potential for their use as immunogens and should be further tested in large animals, such as horses.


Subject(s)
Black Widow Spider , Spider Venoms , Animals , Ankyrins , Antivenins/pharmacology , Antivenins/therapeutic use , Horses , Mice , Rabbits
15.
Toxicon ; 207: 43-47, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35007607

ABSTRACT

Here we report, for the first time, a natural hybrid between Crotalus atrox and C. mictlantecuhtli based on intermediate characteristics of the external morphology and venom. Morphologically, the individual had characteristics of both parent species. The hybrid's venom exhibited an intermediate composition including the presence of crotoxin which has never been documented in C. atrox but is well documented in C. mictlantecuhtli. The hybrid's venom was highly toxic and showed an intermediate proteolytic activity between the parental species. The two Mexican antivenoms were able to neutralize the hybrid's venom's lethality.


Subject(s)
Crotalid Venoms , Crotoxin , Animals , Antivenins , Crotalid Venoms/toxicity , Crotalus , Mexico
16.
Biochimie ; 192: 111-124, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34656669

ABSTRACT

Intraspecific variation in snake venoms has been widely documented worldwide. However, there are few studies on this subject in Mexico. Venom characterization studies provide important data used to predict clinical syndromes, to evaluate the efficacy of antivenoms and, in some cases, to improve immunogenic mixtures in the production of antivenoms. In the present work, we evaluated the intraspecific venom variation of Crotalus basiliscus, a rattlesnake of medical importance and whose venom is used in the immunization of horses to produce one of the Mexican antivenoms. Our results demonstrate that there is variation in biological and biochemical activities among adult venoms and that there is an ontogenetic change from juvenile to adult venoms. Juvenile venoms were more lethal and had higher percentages of crotamine and crotoxin, while adult venoms had higher percentages of snake venom metalloproteases (SVMPs). Additionally, we documented crotoxin-like PLA2 variation in which specimens from Zacatecas, Sinaloa and Michoacán (except 1) lacked the neurotoxin, while the rest of the venoms had it. Finally, we evaluated the efficacy of three lots of Birmex antivenom and all three were able to neutralize the lethality of four representative venoms but were not able to neutralize crotamine. We also observed significant differences in the LD50 values neutralized per vial among the different lots. Based on these results, we recommend including venoms containing crotamine in the production of antivenom for a better immunogenic mixture and to improve the homogeneity of lots.


Subject(s)
Antivenins/chemistry , Crotalus , Crotoxin/chemistry , Animals , Humans , Mexico , Mice , Species Specificity
17.
Toxins (Basel) ; 13(8)2021 08 21.
Article in English | MEDLINE | ID: mdl-34437453

ABSTRACT

The Baja California Peninsula has over 250 islands and islets with many endemic species. Among them, rattlesnakes are the most numerous but also one of the least studied groups. The study of island rattlesnake venom could guide us to a better understanding of evolutionary processes and the description of novel toxins. Crotalus helleri caliginis venom samples were analyzed to determine possible ontogenetic variation with SDS-PAGE in one and two dimensions and with RP-HPLC. Western Blot, ELISA, and amino-terminal sequencing were used to determine the main components of the venom. The biological and biochemical activities demonstrate the similarity of C. helleri caliginis venom to the continental species C. helleri helleri, with both having low proteolytic and phospholipase A2 (PLA2) activity but differing due to the absence of neurotoxin (crotoxin-like) in the insular species. The main components of the snake venom were metalloproteases, serine proteases, and crotamine, which was the most abundant toxin group (30-35% of full venom). The crotamine was isolated using size-exclusion chromatography where its functional effects were tested on mouse phrenic nerve-hemidiaphragm preparations in which a significant reduction in muscle twitch contractions were observed. The two Mexican antivenoms could neutralize the lethality of C. helleri caliginis venom but not the crotamine effects.


Subject(s)
Antivenins/therapeutic use , Crotalus , Crotoxin/chemistry , Crotoxin/genetics , Crotoxin/toxicity , Paralysis/chemically induced , Paralysis/drug therapy , Snake Bites/drug therapy , Animals , Biological Ontologies , Genetic Variation , Mexico
18.
Toxicon ; 197: 70-78, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-33894246

ABSTRACT

Crotamine is a paralyzing toxin (MW: ~5 kDa) found in different proportions in some rattlesnake venoms (up to 62%). Mexican pit viper antivenoms have shown low immunoreactivity against crotamine, which is an urgent quality to be improved. The objective of this work was to evaluate the ability of a novel recombinant fusion protein composed of sphingomyelinase D and crotamine, and two whole venoms from Crotalus molossus nigrescens and C. oreganus helleri to produce neutralizing antibodies against crotamine. These immunogens were separately used for immunization procedures in rabbits. Then, we generated three experimental antivenoms to test their cross-reactivity via western-blot against crotamine from 7 species (C. m. nigrescens, C. o. helleri, C. durissus terrificus, C. scutulatus salvini, C. basiliscus, C. culminatus and C. tzabcan). We also performed pre-incubation neutralization experiments in mice to measure the neutralizing potency of each antivenom against crotamine induced hind limb paralysis. Our antivenoms showed broad recognition across crotamine from most of the tested species. Also, neutralization against crotamine paralysis symptom was successfully achieved by our three antivenoms, albeit with different efficiencies. Our results highlight the use of crotamine enriched venoms and our novel recombinant fusion protein as promising immunogens to improve the neutralizing potency against crotamine for the improvement of Mexican antivenoms.


Subject(s)
Crotalid Venoms , Animals , Antivenins/pharmacology , Crotalus , Mexico , Mice , Neutralization Tests , Rabbits , Recombinant Fusion Proteins
19.
Front Immunol ; 12: 612846, 2021.
Article in English | MEDLINE | ID: mdl-33815366

ABSTRACT

Rattlesnakes are a diverse clade of pit vipers (snake family Viperidae, subfamily Crotalinae) that consists of numerous medically significant species. We used validated in vitro assays measuring venom-induced clotting time and strength of any clots formed in human plasma and fibrinogen to assess the coagulotoxic activity of the four medically relevant Mexican rattlesnake species Crotalus culminatus, C. mictlantecuhtli, C. molossus, and C. tzabcan. We report the first evidence of true procoagulant activity by Neotropical rattlesnake venom in Crotalus culminatus. This species presented a strong ontogenetic coagulotoxicity dichotomy: neonates were strongly procoagulant via Factor X activation, whereas adults were pseudo-procoagulant in that they converted fibrinogen into weak, unstable fibrin clots that rapidly broke down, thereby likely contributing to net anticoagulation through fibrinogen depletion. The other species did not activate clotting factors or display an ontogenetic dichotomy, but depleted fibrinogen levels by cleaving fibrinogen either in a destructive (non-clotting) manner or via a pseudo-procoagulant mechanism. We also assessed the neutralization of these venoms by available antivenom and enzyme-inhibitors to provide knowledge for the design of evidence-based treatment strategies for envenomated patients. One of the most frequently used Mexican antivenoms (Bioclon Antivipmyn®) failed to neutralize the potent procoagulant toxic action of neonate C. culminatus venom, highlighting limitations in snakebite treatment for this species. However, the metalloprotease inhibitor Prinomastat substantially thwarted the procoagulant venom activity, while 2,3-dimercapto-1-propanesulfonic acid (DMPS) was much less effective. These results confirm that venom-induced Factor X activation (a procoagulant action) is driven by metalloproteases, while also suggesting Prinomastat as a more promising potential adjunct treatment than DMPS for this species (with the caveat that in vivo studies are necessary to confirm this potential clinical use). Conversely, the serine protease inhibitor 4-(2-aminoethyl)benzenesulfonyl fluoride hydrochloride (AEBSF) inhibited the direct fibrinogen cleaving actions of C. mictlantecuhtli venom, thereby revealing that the pseudo-procoagulant action is driven by kallikrein-type serine proteases. Thus, this differential ontogenetic variation in coagulotoxicity patterns poses intriguing questions. Our results underscore the need for further research into Mexican rattlesnake venom activity, and also highlights potential limitations of current antivenom treatments.


Subject(s)
Blood Coagulation/drug effects , Crotalid Venoms/toxicity , Animals , Antivenins/immunology , Blood Coagulation Factors/metabolism , Blood Coagulation Tests/methods , Coagulation Protein Disorders/blood , Coagulation Protein Disorders/diagnosis , Coagulation Protein Disorders/etiology , Crotalus/classification , Crotalus/genetics , Mexico , Neutralization Tests
20.
Biochimie ; 182: 206-216, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33485932

ABSTRACT

The elapid genus, Micruroides, is considered the sister clade of all New World coral snakes (Genus Micrurus), is monotypic, and is represented by Sonoran Coral Snakes, Micruroides euryxanthus. Coral snakes of the genus Micrurus have been reported to have venoms that are predominantly composed of phospholipases A2 (PLA2) or three finger toxins (3FTx), but the venoms of the genus Micruroides are almost completely unstudied. Here, we present the first description of the venom of M. euryxanthus including identification of some proteins as well as transcriptomic, and biological activity assays. The most abundant components within M. euryxanthus venom are 3FTxs (62.3%) and there was relatively low proportion of PLA2s (14.2%). The venom phenotype supports the hypothesis that the common ancestor of Micrurus and Micruroides had a 3FTx-dominated venom. Within the venom, there were two nearly identical α-neurotoxins (α-Ntx), one of which was designated Eurytoxin, that account for approximately 60% of the venom's lethality to mice. Eurytoxin was cloned, expressed in a soluble and active form, and used to produce rabbit hyperimmune serum. This allowed the analysis of its immunochemical properties, showing them to be different from the recombinant αNTx D.H., present in the venoms of some species of Micrurus. Finally, we observed that the commercial antivenom produced in Mexico for coral snake envenomation is unable to neutralize the lethality from M. euryxanthus venom. This work allowed the classification of Micruroides venom into the 3FTx-predominant group and identified the main components responsible for toxicity to mice.


Subject(s)
Coral Snakes , Elapid Venoms , Phospholipases A2 , Reptilian Proteins , Animals , Coral Snakes/genetics , Coral Snakes/metabolism , Elapid Venoms/biosynthesis , Elapid Venoms/genetics , Phospholipases A2/biosynthesis , Phospholipases A2/genetics , Reptilian Proteins/biosynthesis , Reptilian Proteins/genetics , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL