Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Neurobiol ; 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37910283

ABSTRACT

Maple syrup urine disease (MSUD) is caused by severe deficiency of branched-chain α-keto acid dehydrogenase complex activity, resulting in tissue accumulation of branched-chain α-keto acids and amino acids, particularly α-ketoisocaproic acid (KIC) and leucine. Affected patients regularly manifest with acute episodes of encephalopathy including seizures, coma, and potentially fatal brain edema during the newborn period. The present work investigated the ex vivo effects of a single intracerebroventricular injection of KIC to neonate rats on redox homeostasis and neurochemical markers of neuronal viability (neuronal nuclear protein (NeuN)), astrogliosis (glial fibrillary acidic protein (GFAP)), and myelination (myelin basic protein (MBP) and 2',3'-cyclic-nucleotide 3'-phosphodiesterase (CNPase)) in the cerebral cortex and striatum. KIC significantly disturbed redox homeostasis in these brain structures 6 h after injection, as observed by increased 2',7'-dichlorofluorescein oxidation (reactive oxygen species generation), malondialdehyde levels (lipid oxidative damage), and carbonyl formation (protein oxidative damage), besides impairing the antioxidant defenses (diminished levels of reduced glutathione and altered glutathione peroxidase, glutathione reductase, and superoxide dismutase activities) in both cerebral structures. Noteworthy, the antioxidants N-acetylcysteine and melatonin attenuated or normalized most of the KIC-induced effects on redox homeostasis. Furthermore, a reduction of NeuN, MBP, and CNPase, and an increase of GFAP levels were observed at postnatal day 15, suggesting neuronal loss, myelination injury, and astrocyte reactivity, respectively. Our data indicate that disruption of redox homeostasis, associated with neural damage caused by acute intracerebral accumulation of KIC in the neonatal period may contribute to the neuropathology characteristic of MSUD patients.

2.
Biochem Biophys Res Commun ; 684: 149123, 2023 12 03.
Article in English | MEDLINE | ID: mdl-37871522

ABSTRACT

Aminoacylase 1 (ACY1) deficiency is an inherited metabolic disorder biochemically characterized by high urinary concentrations of aliphatic N-acetylated amino acids and associated with a broad clinical spectrum with predominant neurological signs. Considering that the pathogenesis of ACY1 is practically unknown and the brain is highly dependent on energy production, the in vitro effects of N-acetylglutamate (NAG) and N-acetylmethionine (NAM), major metabolites accumulating in ACY1 deficiency, on the enzyme activities of the citric acid cycle (CAC), of the respiratory chain complexes and glutamate dehydrogenase (GDH), as well as on ATP synthesis were evaluated in brain mitochondrial preparations of developing rats. NAG mildly inhibited mitochondrial isocitrate dehydrogenase 2 (IDH2) activity, moderately inhibited the activities of isocitrate dehydrogenase 3 (IDH3) and complex II-III of the respiratory chain and markedly suppressed the activities of complex IV and GDH. Of note, the NAG-induced inhibitory effect on IDH3 was competitive, whereas that on GDH was mixed. On the other hand, NAM moderately inhibited the activity of respiratory complexes II-III and GDH activities and strongly decreased complex IV activity. Furthermore, NAM was unable to modify any of the CAC enzyme activities, indicating a selective effect of NAG toward IDH mitochondrial isoforms. In contrast, the activities of citrate synthase, α-ketoglutarate dehydrogenase, malate dehydrogenase, and of the respiratory chain complexes I and II were not changed by these N-acetylated amino acids. Finally, NAG and NAM strongly decreased mitochondrial ATP synthesis. Taken together, the data indicate that NAG and NAM impair mitochondrial brain energy homeostasis.


Subject(s)
Glutamic Acid , Isocitrate Dehydrogenase , Rats , Animals , Glutamic Acid/metabolism , Isocitrate Dehydrogenase/metabolism , Rats, Wistar , Energy Metabolism , Brain/metabolism , Adenosine Triphosphate/metabolism , Homeostasis
3.
ACS Chem Neurosci ; 14(6): 1181-1192, 2023 03 15.
Article in English | MEDLINE | ID: mdl-36853167

ABSTRACT

The present study investigated the antidepressant-like potential of a functionalized 3-selanyl benzo[b]furan (SeBZF) in male Swiss mice. To evaluate possible antidepressant-like actions, the compounds SeBZF1-5 (50 mg/kg, intragastric, i.g., route) were acutely screened in the tail suspension tests (TSTs). The compound 3-((4-methoxyphenyl)selanyl)-2-phenylbenzofuran (SeBZF3) was then selected. Dose-response and time-response curves revealed that SeBFZ3 exerts antidepressant-like effects in the TST (5-50 mg/kg) and forced swimming test (FST; 50 mg/kg). Additional tests demonstrated that pretreatment with receptor antagonists WAY100635 (5-HT1A; 0.1 mg/kg, subcutaneous route), ketanserin (5-HT2A/C; 1 mg/kg, intraperitoneal, i.p.), or ondansetron (5-HT3; 1 mg/kg, i.p.) blocked the SeBZF3 antidepressant-like effects (50 mg/kg) in the TST. In addition, the coadministration of subeffective doses of SeBZF3 (1 mg/kg, i.g.) and fluoxetine (a selective serotonin reuptake inhibitor; 5 mg/kg, i.p.) produced synergistic action. A high dose of SeBZF3 (300 mg/kg) did not produce oral acute toxicity. The present results provide evidence for the antidepressant-like action of SeBZF3 and its relative safety, as well as predict the possible interactions with the serotonergic system, aiding in the development of novel options to alleviate psychiatric disabilities.


Subject(s)
Antidepressive Agents , Serotonin , Male , Mice , Animals , Serotonin/physiology , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Fluoxetine/pharmacology , Selective Serotonin Reuptake Inhibitors/pharmacology , Swimming/psychology , Hindlimb Suspension/methods , Hindlimb Suspension/psychology , Depression/drug therapy
SELECTION OF CITATIONS
SEARCH DETAIL