Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
4.
Vet Immunol Immunopathol ; 228: 110100, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32871408

ABSTRACT

Mesenchymal stem cells (MSC) are modern tools in regenerative therapies of humans and animals owed to their immunomodulatory properties, which are activated in a pro-inflammatory environment. Different preconditioning strategies had been devised to enhance the immunomodulatory properties of MSC. In this research, we evaluated the immunological attributes of equine adipose MSC (eAMSC) before and after preconditioning in vitro with prostaglandin E2 (PGE2), substance P (SP), their combination and IFNγ. PGE2/SP was the best combination to keep or enhance the mesodermal lineage differentiation of eAMSC. Alongside with this, preconditioning of eMSC with PGE2 and SP did not affect expression of stemness MSC surface phenotype: CD90+, CD44+, MHC class I+, MHC class II- and CD45-, assessed by cytometry. Both naïve and preconditioned eAMSC expressed genes related with immune properties, such as MHC-I, PTGES, IL6, IL1A, TNFα and IL8 assessed by qPCR. Only TNFα was under expressed in treated cells, while the other markers were either overexpressed or not changed. In no cases MHC-II expression was detected. The antiproliferative effect of preconditioned eAMSC exposed to activated peripheral blood mononuclear cells (PBMC) showed that SP treatment significantly inhibited proliferation of LPS stimulated PBMC. When eAMSC were stimulated with Poly I:C, all the treatments significantly inhibited proliferation of stimulated PBMC (p < 0.05). Direct contact (coculture) between the preconditioned eAMSC and PBMC, induced a shift of significantly more (CD4/CD25/FOXP3)+ T-regulatory PBMC than naïve eAMSC. In the experiments of this research, we investigated the secreted proteomic profile of naïve and preconditioned eAMSC, 42 up-regulated and 40 down-regulated proteins were found in the proteomic assay. Our proteomic data revealed profound changes in the secretory pattern of MSC exposed to different treatments, compared to naïve eAMSC as well as among treatments. In overall, compared to naïve cells, the protein profile of preconditioned cells resembled the mesenchymal-epithelial transition (MET). Here we showed that the combined use of PGE2 and SP provoked in overall the highest expression of anti-inflammatory markers as well as lead to an increased acquisition of a T-regulatory phenotype in preconditioned eAMSC without affecting their "stemness".


Subject(s)
Dinoprostone/immunology , Horses/immunology , Mesenchymal Stem Cells/immunology , Proteins/metabolism , Substance P/immunology , Animals , Biomarkers/metabolism , Cell Differentiation/immunology , Cell Proliferation , Flow Cytometry/veterinary , Interferon-gamma/immunology , Male , Mesenchymal Stem Cells/metabolism , Mesoderm/cytology , Proteome , Secretory Pathway/immunology
5.
Theriogenology ; 146: 94-103, 2020 Apr 01.
Article in English | MEDLINE | ID: mdl-32065998

ABSTRACT

The objective of this study was to evaluate, in the domestic cat, the effect of ovarian stimulation with eCG prior to oocyte in vitro maturation (priming) on in vitro and in vivo development after in vitro fertilization (IVF). For this purpose, oocyte donors were either 1) treated with a single dose of 200 IU eCG four days before oocyte recovery (eCG group), or, 2) given no treatment before oocyte recovery (control group). Ovaries of both groups were collected by ovariohysterectomy (OVH) and cumulus-oocyte complexes (COCs) were recovered by slicing. Immature COCs from both groups were matured in vitro (IVM) for 26-28 h. IVF was done with refrigerated epididymal sperm. After 24 h co-incubation, presumptive zygotes were cultured in vitro for eight days. The rates of cleavage, morulae, blastocyst development and hatching were estimated. Some blastocysts were stained for total cell counting and others were used for gene expression analysis of pluripotency (OCT4, SOX2 and NANOG) and differentiation markers (CDX2 and GATA6). Additionally, to evaluate in vivo development, embryos from the eCG group were transferred at Day 5 and Days 7 or 8 of IVC to synchronized cat recipients. The results showed that, eCG priming increased significantly the rate of blastocyst development as compared to the control group (37.9 and 25.6%, respectively) (P < 0.05). No differences were observed in total cell number of blastocysts and hatching blastocysts (mean ± SD) between the eCG and control groups (420.6 ± 193.6 and 347.0 ± 237.1, respectively) (P > 0.05). In the gene expression analysis, blastocysts generated in the eCG group had higher expression of OCT4 than blastocysts from the control group (P < 0.05). However, no significant differences were observed in the relative expression of SOX2, NANOG, CDX2 and GATA6 (P > 0.05). Additionally, six embryo transfer (ET) procedures were done, three with Day 5 embryos and three with Day 7 or 8 embryos. Recipients from both ET groups delivered live kittens. The total pregnancy rate was 4/6 (67%), meanwhile the live birth rate was 2/6 (33%). In conclusion, eCG priming improved the rate of blastocyst development in vitro and increased relative expression of OCT4. These results demonstrate that eCG priming of oocytes donors before IVM improves oocyte competence, enhance in vitro embryo development and allows live births of healthy offspring after ET.


Subject(s)
Chorionic Gonadotropin/pharmacology , Embryo, Mammalian/physiology , Embryonic Development/physiology , Fertilization in Vitro/veterinary , In Vitro Oocyte Maturation Techniques/veterinary , Oocytes/physiology , Animals , Cats , Embryo Transfer , Female , Gene Expression Regulation, Developmental/physiology , Hysterectomy/veterinary , Ovariectomy/veterinary , Pregnancy
6.
Zygote ; 27(6): 398-404, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31576792

ABSTRACT

Quality of in vitro-produced embryos is influenced by changes in gene expression in response to adverse conditions. Gene markers for predicting 'good embryos' do not exist at present. We propose that the expression of pluripotency markers OCT4-SOX2-NANOG in D9 (day 9) bovine demi-embryos correlated with development at D13 (day 13). Day 8 in vitro-produced blastocysts were split in two cloned halves, one half (D9) was subjected to analysis of pluripotency markers and the other was kept in culture until D13 of development. Embryo development was scored and correlated with its own status at D9 and assigned to one of two categories: G1, arrested/dead; or G2, development up to D13. SOX2 and NANOG expression levels were significantly higher in embryos from G1 and there was also negative correlation between SOX2 and embryo survival to D13 (G3; r = -0.37; P = 0.03). We observed a significant reduction in the expression of the three studied genes from D9 to D13. Furthermore, there was a correlation between the expression of pluripotency markers at D9 and embryo diameter and the expression of trophoblastic markers at D13 (TP1-EOMES-FGF4-CDX2-TKDP1). Finally, the quotient between the relative expression of SOX2 and OCT4 in the D9 blastocysts from G1 and G2 showed that embryos that were considered as competent (G2) had a quotient close to one, while the other group had a quotient of 2.3 due to a higher expression of SOX2. These results might indicate that overexpression of SOX2 at the blastocyst stage had a negative effect on the control of embryonic developmental potential.


Subject(s)
Blastocyst/metabolism , Embryo Culture Techniques/methods , Embryo, Mammalian/metabolism , Embryonic Development/genetics , Gene Expression Regulation, Developmental , SOXB1 Transcription Factors/genetics , Animals , Blastocyst/cytology , Cattle , Embryo, Mammalian/cytology , Embryo, Mammalian/embryology , Female , Time Factors
7.
Theriogenology ; 106: 93-102, 2018 Jan 15.
Article in English | MEDLINE | ID: mdl-29049924

ABSTRACT

Adult stromal mesenchymal stem cells (MSCs) have been postulated as responsible for cell renewal in highly and continuously regenerative tissues such as the endometrium. MSCs have been identified in the endometrium of many species including humans, rodents, pets and some farm animals, but not in horses. The objective of this work was to isolate such cells from the endometrium of mares and to compare their main biological attributes with horse adipose-derived MSCs. Here we successfully isolated and characterized endometrial MSCs (eMSCs) from mares. Said cells showed fibroblast-like morphology, grew on plastic, had doubling population times of 46.4 ± 3.38 h, underwent tri-lineage (osteo, chondro and adipogenic) differentiation after appropriate inductions, migrated toward the attraction of fetal calf serum and displayed a pattern of surface markers commonly accepted for horse MSCs. All these are properties of MSCs. Some of these attributes were shared with equine adipose-derived MSCs, but the migration pattern of eMSC at 12 and 24 h after stimulation was reduced in comparison with adipose MSCs. Also, expression of CD44, CD90 and MHCI surface markers were dramatically down-regulated in eMSCs. In conclusion, equine-derived endometrial MSC share biological attributes with adipose MSC of this species, but displayed a different surface marker phenotype and an impaired migration ability. Conceivably, this phenotype is distinctive for MSC of this origin.


Subject(s)
Adipose Tissue/cytology , Endometrium/cytology , Horses/physiology , Membrane Proteins/metabolism , Mesenchymal Stem Cells/physiology , Animals , Biomarkers , Cell Movement , Cells, Cultured , Female , Gene Expression Regulation , Membrane Proteins/genetics
8.
Reprod Domest Anim ; 52(5): 881-889, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28544240

ABSTRACT

The kodkod population is in constant decrease and the somatic cell nuclear transfer (SCNT) might help to preserve the genetic pool of this species. The cell cycle synchronization of donor cells plays a crucial role in SCNT. The objective of this research was to evaluate two different methods for quiescence induction, serum starvation (SS) and contact inhibition (CI), both for 1, 3 and 5 days, on skin fibroblast from domestic cat and kodkod. Flow cytometry analysis revealed that in domestic cat, SS and CI, both at 3 and 5 days, increased the percentage of fibroblasts in G0/G1 compared to growing cells (GC) (p < .05). In kodkod, only SS for 3 and 5 days and CI for 1 and 3 days increased the percentage of fibroblasts in G0/G1 compared to GC (p < .05). Viability analysis by differential staining revealed that SS for 5 days decreased the proportion of live fibroblasts in domestic cat and kodkod (p < .05). Regarding gene expression analysis, in domestic cat fibroblasts, no differences were found in the BAX/BCL2 ratio in SS and CI (both at 1, 3 and 5 days) compared to GC. In kodkod fibroblasts, BAX/BCL2 ratio was increased in CI at 3 and 5 days compared to SS at 3 and 5 days (p < .05). In conclusion, in kodkod fibroblasts SS for 5 days and CI after 3 days might have a negative impact on cellular viability. According to these results, we suggest SS for 3 days for cell cycle synchronization in kodkod fibroblasts.


Subject(s)
Cell Cycle/physiology , Felidae/physiology , Fibroblasts/cytology , Nuclear Transfer Techniques/veterinary , Animals , Apoptosis/genetics , Cell Survival , Cloning, Organism/veterinary , Contact Inhibition , Culture Media, Serum-Free , Gene Expression Profiling , Resting Phase, Cell Cycle
9.
Reprod Domest Anim ; 52(5): 707-714, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28419571

ABSTRACT

Stem cells have been postulated as responsible for cell regeneration in highly and continuously regenerative tissues such as the endometrium. Few studies in cattle have identified and specified the presence of stem cells in the endometrium during the oestrous cycle. The aim of this study was to investigate the presence of mesenchymal stem cells (MSCs) in the bovine endometrium during the follicular phase (FP) of the oestrous cycle. Uterine tissue was collected in the time-frame comprising day 18 of the cycle and ovulation (day 0). We isolated, cultured and expanded four primary cell lines from endometrium and identified byRT-qPCR the expression of OCT4, SOX2 but not NANOG (undifferentiated/embryonic markers), CD44 (MSCs marker) and c-KIT (stem cell marker) genes; and the encoded Oct4, Sox2 and Cd44 proteins by Western blot or immunostaining of paraffin-embedded tissue in endometrium. We demonstrated that cells isolated from bovine endometrium displayed essentially the same gene expression pattern; however, at the protein level, Oct4 and Cd44 were not detected. Besides, they showed typical functional characteristics of MSCs such as fibroblast-like morphology, plastic adherence, high proliferative capacity, clone formation in vitro and the ability to differentiate into chondrogenic, osteogenic and adipogenic lineages. We obtained for the first time an extensive characterization of undifferentiated cells populations contained in the bovine endometrium during the FP of the oestrous cycle.


Subject(s)
Endometrium/cytology , Follicular Phase , Mesenchymal Stem Cells/cytology , Animals , Cattle , Cell Differentiation , Cells, Cultured , Estrous Cycle , Female , Gene Expression
10.
Theriogenology ; 87: 124-134, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27641677

ABSTRACT

Embryo splitting has been used for the production of identical twins and to increase the pregnancy rate per available embryo. Split blastocysts can develop to term; however, little is known about the impact on gene expression of split embryos, especially at the whole transcriptome level. This work was aimed to evaluate the effect of blastocyst splitting on global gene expression profile at the elongation stage. For that, split and time-matched nonsplit (control group) bovine blastocysts were transferred to a bovine recipient and recovered at Day 17 of development. The number of collected embryos, their size, and global gene expression was compared between both groups. From 16 transferred split embryos, six (37.5%) were collected, whereas nine elongated were recovered from 17 nonsplit (52.9%). Neither the recovery rate nor the average length of the elongated embryos was significantly different between both groups. However more than 50% of embryos from the control group had a length surpassing 100 mm, whereas only 33% of the split embryos reached that size. Global gene expression was performed in individual elongated embryos from both groups using Two-Color Microarray-Based Gene Expression Analysis. From detected genes, 383 (1.31%) were differentially expressed between both groups, among them, 185 (0.63%) were downregulated and 198 (0.67%) genes were upregulated in split embryos. Bioinformatic analysis of differentially expressed genes revealed that embryo splitting affects transcriptomes of resulting elongated embryos, mainly downregulating genes involved in matrix remodelation, control of growth, detoxification, and transport of metabolites. These in turns might have a detrimental impact on the developmental potential of produced embryos.


Subject(s)
Blastocyst/cytology , Cattle/embryology , Gene Expression Regulation, Developmental/physiology , Transcriptome/physiology , Animals , Blastocyst/physiology , Embryonic Development , Female , Fertilization in Vitro , Pregnancy
11.
Reprod Domest Anim ; 49(4): 550-559, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24754629

ABSTRACT

Endometrial stem cells have been identified in humans, mice and pigs. This study was designed to determine whether the uterine endometrium of cycling cows contains such cells, to identify markers of stemness and ultimately to isolate putative stem/progenitor cell and evaluate their capability to differentiate into mesodermal derivatives. Uteri from healthy cows in the early (days 1-5) and late luteal phases (days 13-18) of the oestrous cycle were collected. Total RNA and proteins were isolated and searched for gene markers of embryonic (OCT4, NANOG, SOX2) and mesenchymal (CD44, STAT3, CD-117) stem cells and for protein markers (Oct4, Sox2, Cd44) in Western blots or immunostaining of paraffin-embedded tissue. Primary cell cultures were isolated; characterized in terms of morphology, colony formation and gene/protein expression; and induced osteogenic and chondrogenic differentiation. We identified expression of embryonic (OCT4 and SOX2, but not NANOG) and mesenchymal (STAT3, CD44 and c-KIT) gene markers in the endometrium of cycling cows and the encoded proteins (Oct4, Sox2 and Cd44) in both stages of the oestrous cycle. Derived cell lines displayed essentially the same gene expression pattern; however, at the protein level, Oct4 was not detected. No clear influence of the stage of the oestrous cycle was found. Cell lines from late luteal phase displayed osteogenic and chondrogenic differentiation potential upon chemical stimulation. In this research, we demonstrated the presence of mesenchymal progenitor cell populations of apparently mesenchymal origin in the endometrium of cycling cows, in both the early and late phases of the oestrous cycle. The cells isolated from the late luteal phase were more acquiescent to differentiate into mesodermal derivatives than cells in the early luteal phase. Our findings might have implications for the understanding of uterine stem cell biology in cows and other farm animal species.


Subject(s)
Cattle , Endometrium/cytology , Estrous Cycle , Mesenchymal Stem Cells/cytology , Octamer Transcription Factor-3/genetics , Animals , Biomarkers/analysis , Cell Differentiation , Cells, Cultured , Female , Gene Expression , Hyaluronan Receptors/analysis , Hyaluronan Receptors/genetics , Octamer Transcription Factor-3/analysis , Real-Time Polymerase Chain Reaction , SOXB1 Transcription Factors/analysis , SOXB1 Transcription Factors/genetics
12.
Res Vet Sci ; 96(1): 95-101, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24377415

ABSTRACT

Repair of injured soft and hard tissues in horses can benefit greatly from the use of regenerative therapies with mesenchymal stem cells (MSC). Vitamin-C and platelet-rich-plasma had been used for in vitro differentiation of MSC. This study was aimed to evaluate the effect of vitamin-C, platelet-rich-plasma and their combination on the in vitro differentiation of adipose horse MSC. We isolated MSC from horse fat and differentiated them in vitro into osteogenic and chondrogenic lineages, as demonstrated by specific staining and RT-qPCR of selected genes. Combining vitamin-C and plasma-rich-platelet positively affected the ability of MSC to differentiate in vitro into mesodermal lineages during 14 days of culture; this effect was not as marked when differentiation was attempted for 21 days. This provides valuable information on the effect of combined use of these molecules in regenerative therapies and their potential application along stem cells for lesions of musculoskeletal tissue in sport horses.


Subject(s)
Adipose Tissue/metabolism , Ascorbic Acid/metabolism , Cell Differentiation/physiology , Horses/metabolism , Mesenchymal Stem Cells/metabolism , Platelet-Rich Plasma/metabolism , Adipose Tissue/cytology , Animals , Cell Differentiation/genetics , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Female , Histocytochemistry/veterinary , Hyaluronan Receptors/genetics , Hyaluronan Receptors/metabolism , Integrin beta1/genetics , Integrin beta1/metabolism , Mesenchymal Stem Cells/cytology , Osteogenesis/physiology , Osteonectin/genetics , Osteonectin/metabolism , RNA/chemistry , RNA/genetics , Reverse Transcriptase Polymerase Chain Reaction/veterinary , SOX9 Transcription Factor/genetics
13.
Article in English | LILACS | ID: lil-623501

ABSTRACT

Viruses depend on cell metabolism for their own propagation. The need to foster an intimate relationship with the host has resulted in the development of various strategies designed to help virus escape from the defense mechanisms present in the host. Over millions of years, the unremitting battle between pathogens and their hosts has led to changes in evolution of the immune system. Snake venoms are biological resources that have antiviral activity, hence substances of significant pharmacological value. The biodiversity in Brazil with respect to snakes is one of the richest on the planet; nevertheless, studies on the antiviral activity of venom from Brazilian snakes are scarce. The antiviral properties of snake venom appear as new promising therapeutic alternative against the defense mechanisms developed by viruses. In the current study, scientific papers published in recent years on the antiviral activity of venom from various species of snakes were reviewed. The objective of this review is to discuss the mechanisms of resistance developed by viruses and the components of snake venoms that present antiviral activity, particularly, enzymes, amino acids, peptides and proteins.


Subject(s)
Animals , Crotalid Venoms , Drug Resistance, Viral
14.
Theriogenology ; 73(1): 71-85, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19836069

ABSTRACT

The objective of this study was to identify microRNAs (miRNAs) expressed in bovine (Bos Taurus) cloned embryos at Day 17 of development (Day 0=day of nucleus transfer or in vitro fertilization) during elongation. Day 7 bovine expanded blastocysts produced by hand made cloning (HMC) or in vitro fertilization were bulk-transferred to synchronized recipient cattle (48 HMC embryos to 10 recipients and 28 in vitro-produced embryos to four recipients). Elongated embryos were retrieved at Day 17; miRNAs were isolated and subjected to microarray screening using custom composite slides spotted with human, mouse, and rat and in silico-predicted miRNAs. An initial profile of expressed miRNAs was determined in cloned embryos and somatic donor cells; this profile changed after somatic cell nucleus transfer, identifying differentially expressed miRNAs between cloned and in vitro-produced bovine embryos. Furthermore, microarray data were validated using a miRNA-specific quantitative reverse transcription-polymerase chain reaction (qRT-PCR) approach (miR-Q). There was an 83% correlation (P=0.01) between microarray and qPCR data. Based on qRT-PCR, correct reprogramming of some miRNAs from the donor cells was confirmed in cloned bovine embryos, whereas other somatic miRNAs were not appropriately reprogrammed. Some of the miRNAs that were equally reprogrammed clustered on the same chromosomal location in the bovine genome. In conclusion, reprogramming of miRNAs seemed to occur in cloned bovine embryos. This could have profound implications for elucidating nuclear reprogramming in somatic cloning, as well as for the role of miRNAs in preimplantation mammalian development.


Subject(s)
Embryo, Mammalian/metabolism , MicroRNAs/metabolism , Animals , Cattle , Cloning, Organism , Embryo Culture Techniques , Fertilization in Vitro , Gene Expression Profiling , Oligonucleotide Array Sequence Analysis
15.
Braz J Med Biol Res ; 39(6): 801-7, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16751987

ABSTRACT

Piplartine {5,6-dihydro-1-[1-oxo-3-(3,4,5-trimethoxyphenyl)-2-propenyl]-2(1H)pyridinone} and piperine {1-5-(1,3)-benzodioxol-5-yl)-1-oxo-2,4-pentadienyl]piperidine} are alkaloid amides isolated from Piper. Both have been reported to show cytotoxic activity towards several tumor cell lines. In the present study, the in vivo antitumor activity of these compounds was evaluated in 60 female Swiss mice (N = 10 per group) transplanted with Sarcoma 180. Histopathological and morphological analyses of the tumor and the organs, including liver, spleen, and kidney, were performed in order to evaluate the toxicological aspects of the treatment with these amides. Administration of piplartine or piperine (50 or 100 mg kg(-1) day(-1) intraperitoneally for 7 days starting 1 day after inoculation) inhibited solid tumor development in mice transplanted with Sarcoma 180 cells. The inhibition rates were 28.7 and 52.3% for piplartine and 55.1 and 56.8% for piperine, after 7 days of treatment, at the lower and higher doses, respectively. The antitumor activity of piplartine was related to inhibition of the tumor proliferation rate, as observed by reduction of Ki67 staining, a nuclear antigen associated with G1, S, G2, and M cell cycle phases, in tumors from treated animals. However, piperine did not inhibit cell proliferation as observed in Ki67 immunohistochemical analysis. Histopathological analysis of liver and kidney showed that both organs were reversibly affected by piplartine and piperine treatment, but in a different way. Piperine was more toxic to the liver, leading to ballooning degeneration of hepatocytes, accompanied by microvesicular steatosis in some areas, than piplartine which, in turn, was more toxic to the kidney, leading to discrete hydropic changes of the proximal tubular and glomerular epithelium and tubular hemorrhage in treated animals.


Subject(s)
Alkaloids/therapeutic use , Antineoplastic Agents, Phytogenic/therapeutic use , Benzodioxoles/therapeutic use , Piper/chemistry , Piperidines/therapeutic use , Piperidones/therapeutic use , Polyunsaturated Alkamides/therapeutic use , Sarcoma 180/drug therapy , Alkaloids/isolation & purification , Alkaloids/toxicity , Animals , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/toxicity , Benzodioxoles/isolation & purification , Benzodioxoles/toxicity , Cell Proliferation/drug effects , Disease Models, Animal , Female , Kidney/drug effects , Kidney/pathology , Liver/drug effects , Liver/pathology , Mice , Neoplasm Transplantation , Piperidines/isolation & purification , Piperidines/toxicity , Piperidones/isolation & purification , Piperidones/toxicity , Plant Extracts/isolation & purification , Plant Extracts/therapeutic use , Plant Extracts/toxicity , Plant Roots/chemistry , Polyunsaturated Alkamides/isolation & purification , Polyunsaturated Alkamides/toxicity , Sarcoma 180/pathology , Spleen/drug effects , Spleen/pathology
16.
Braz. j. med. biol. res ; 39(6): 801-807, June 2006. ilus, tab
Article in English | LILACS | ID: lil-428281

ABSTRACT

Piplartine {5,6-dihydro-1-[1-oxo-3-(3,4,5-trimethoxyphenyl)-2-propenyl]-2(1H)pyridinone} and piperine {1-5-(1,3)-benzodioxol-5-yl)-1-oxo-2,4-pentadienyl]piperidine} are alkaloid amides isolated from Piper. Both have been reported to show cytotoxic activity towards several tumor cell lines. In the present study, the in vivo antitumor activity of these compounds was evaluated in 60 female Swiss mice (N = 10 per group) transplanted with Sarcoma 180. Histopathological and morphological analyses of the tumor and the organs, including liver, spleen, and kidney, were performed in order to evaluate the toxicological aspects of the treatment with these amides. Administration of piplartine or piperine (50 or 100 mg kg-1 day-1 intraperitoneally for 7 days starting 1 day after inoculation) inhibited solid tumor development in mice transplanted with Sarcoma 180 cells. The inhibition rates were 28.7 and 52.3 percent for piplartine and 55.1 and 56.8 percent for piperine, after 7 days of treatment, at the lower and higher doses, respectively. The antitumor activity of piplartine was related to inhibition of the tumor proliferation rate, as observed by reduction of Ki67 staining, a nuclear antigen associated with G1, S, G2, and M cell cycle phases, in tumors from treated animals. However, piperine did not inhibit cell proliferation as observed in Ki67 immunohistochemical analysis. Histopathological analysis of liver and kidney showed that both organs were reversibly affected by piplartine and piperine treatment, but in a different way. Piperine was more toxic to the liver, leading to ballooning degeneration of hepatocytes, accompanied by microvesicular steatosis in some areas, than piplartine which, in turn, was more toxic to the kidney, leading to discrete hydropic changes of the proximal tubular and glomerular epithelium and tubular hemorrhage in treated animals.


Subject(s)
Animals , Female , Mice , Alkaloids/therapeutic use , Antineoplastic Agents, Phytogenic/therapeutic use , Benzodioxoles/therapeutic use , Piper/chemistry , Piperidines/therapeutic use , Piperidones/therapeutic use , Polyunsaturated Alkamides/therapeutic use , /drug therapy , Alkaloids/isolation & purification , Alkaloids/toxicity , Antineoplastic Agents, Phytogenic/isolation & purification , Antineoplastic Agents, Phytogenic/toxicity , Benzodioxoles/isolation & purification , Benzodioxoles/toxicity , Cell Proliferation/drug effects , Disease Models, Animal , Kidney/drug effects , Kidney/pathology , Liver/drug effects , Liver/pathology , Neoplasm Transplantation , Piperidines/isolation & purification , Piperidines/toxicity , Piperidones/isolation & purification , Piperidones/toxicity , Plant Extracts/isolation & purification , Plant Extracts/therapeutic use , Plant Extracts/toxicity , Plant Roots/chemistry , Polyunsaturated Alkamides/isolation & purification , Polyunsaturated Alkamides/toxicity , /pathology , Spleen/drug effects , Spleen/pathology
17.
Anim Reprod Sci ; 87(3-4): 181-92, 2005 Jul.
Article in English | MEDLINE | ID: mdl-15911169

ABSTRACT

The cell cycle stage of donor cells is an important factor influencing developmental ability of nuclear transfer embryos. In the present experiment, cumulus and fibroblast cells of cattle were subjected to flow cytometric cell cycle analysis before being used in somatic cloning experiments. The following experimental groups were analyzed for each cell type: (1) actively dividing cells, (2) cells confluent for 4 days, (3) cells starved for 1, 2, 3 or 5 days. Using the propidium iodide flow cytometric assay, there were no significant differences (P > or = 0.05) in the percentage of cells in G0/G1 regardless of origin and type of cell, after confluency or serum starvation. Differences with the growing cells were found (P < or = 0.01). To determine what subset of cells in G0/G1 were in the G0 subphase of the cell cycle, an immunofluorescence analysis was conducted using monoclonal anti-PCNA antibodies in a FACS assay. There were not statistically significant differences in the percentage of cells that enter G0, between confluent and any starved group for either type of cells. Bovine fibroblast cells, confluent or serum starved for 3 days, were used in nuclear transfer experiments. A slight trend for a more desirable fusion rate in starved cells was detected, and embryo cleavage was greater in starved cells, however, in vitro development to blastocysts was similar between groups. Data indicate that prolonged culture of cells in the absence of serum does not imply a shift in the percentage of cells that enter G0/G1 or G0 alone, and that confluency is sufficient to induce quiescence. This finding can be beneficial in nuclear transfer programs, because there are negative effects such as apoptosis, associated with serum starvation.


Subject(s)
Cattle/physiology , Fibroblasts/cytology , Granulosa Cells/cytology , Animals , Cell Cycle/physiology , Culture Media, Serum-Free , DNA/physiology , Embryo Transfer/veterinary , Female , Flow Cytometry
18.
Zygote ; 13(4): 277-82, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16388695

ABSTRACT

The outcome of the process of cloning by nuclear transfer depends on multiple factors that affect its efficiency. Donor cells should be carefully selected for their use in somatic nuclear transfer, and the protocols used for keeping frozen cell banks are of cardinal importance. Here we studied the effect of two protocols for freezing donor cells on fusion rate and development into blastocysts. Our hypothesis is that freezing affects cell membranes in a way that interferes with the fusion process upon cloning but without hampering normal cell development in vitro. We found that freezing cell lines without controlling the cooling rate gives lower yields in the fusion step and in the final development into blastocysts, compared with cells frozen with a controlled cooling rate of approximately 1 degrees C/min. Transmission electron microscopy of the cells subjected to different freezing procedures showed major damage to the cells frozen with a non-controlled protocol. We conclude that freezing of donor cells for cloning is a critical step in the procedure and should be monitored carefully using a method that allows for a step-wise, controlled cooling rate.


Subject(s)
Blastocyst/physiology , Cloning, Organism , Cryopreservation , Fibroblasts , Hybrid Cells/physiology , Tissue Preservation/methods , Animals , Blastocyst/ultrastructure , Cattle , Cell Fusion , Cell Line , Female , In Vitro Techniques , Micromanipulation , Nuclear Transfer Techniques , Oocytes , Pregnancy , Skin/cytology
19.
J Biotechnol ; 114(1-2): 89-97, 2004 Oct 19.
Article in English | MEDLINE | ID: mdl-15464602

ABSTRACT

The production of large quantities of complex proteins with biopharmaceutical purposes is the main drawback for their more extensive use. Here we demonstrated that a direct instillation of a recombinant adenoviral vector containing an expression cassette for the human growth hormone gene into the mammary gland of mice and goats allowed for the efficient secretion of human growth hormone in the milk. Through this approach we were able to express human growth hormone at maximal levels of 2.8 mg/ml in the milk of mice and up to 0.3 mg/ml in goat milk. We found that the expression levels were closely dependent on both the degree of differentiation of the secretory epithelium and on the adenoviral dose used. Here we demonstrated that the direct transduction of mammary epithelial cells by means of a recombinant adenovirus could be a suitable alternative to transgenic technology for the production of recombinant proteins of biopharmaceutical interest.


Subject(s)
Adenoviridae/genetics , Animals, Genetically Modified/genetics , Animals, Genetically Modified/metabolism , Goats/genetics , Human Growth Hormone/biosynthesis , Human Growth Hormone/genetics , Milk/chemistry , Protein Engineering/methods , Animals , Human Growth Hormone/chemistry , Humans , Mammary Glands, Human/metabolism , Mice , Milk/metabolism , Transformation, Genetic/genetics
20.
Genet Anal ; 15(3-5): 179-87, 1999 Nov.
Article in English | MEDLINE | ID: mdl-10596760

ABSTRACT

The use of live bioreactors for the expression of human genes in the mammary gland of transgenic animals is one of the most cost-effective ways for the production of valuable recombinant therapeutic proteins. Among the transgenic species used so far, rabbits are good candidates for the expression of tens to hundreds of grams of complex proteins in the milk during lactation. The lactating mammary gland of rabbits has proven to be effective in the processing of complex proteins. In this work. the potential use of rabbits as bioreactors is discussed based on our results and the published data.


Subject(s)
Biological Products/biosynthesis , Biotechnology/methods , Milk Proteins/biosynthesis , Rabbits/genetics , Recombinant Fusion Proteins/biosynthesis , Animals , Animals, Genetically Modified , Biological Products/genetics , Caseins/genetics , Female , Forecasting , Gene Expression Regulation , Genes, Synthetic , Genetic Vectors , Humans , Male , Mammary Glands, Animal/metabolism , Mice , Mice, Transgenic , Milk Proteins/genetics , Promoter Regions, Genetic , Recombinant Fusion Proteins/genetics , Transgenes , Whey Proteins
SELECTION OF CITATIONS
SEARCH DETAIL