Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Rep ; 12(1): 20443, 2022 11 28.
Article in English | MEDLINE | ID: mdl-36443404

ABSTRACT

Hemorrhagic shock (HS), a major cause of trauma-related mortality, is mainly treated by crystalloid fluid administration, typically with lactated Ringer's (LR). Despite beneficial hemodynamic effects, such as the restoration of mean arterial pressure (MAP), LR administration has major side effects, including organ damage due to edema. One strategy to avoid such effects is pre-hospitalization intravenous administration of the potent vasoconstrictor terlipressin, which can restore hemodynamic stability/homeostasis and has anti-inflammatory effects. Wistar rats were subjected to HS for 60 min, at a target MAP of 30-40 mmHg, thereafter being allocated to receive LR infusion at 3 times the volume of the blood withdrawn (liberal fluid management); at 2 times the volume (conservative fluid management), plus terlipressin (10 µg/100 g body weight); and at an equal volume (conservative fluid management), plus terlipressin (10 µg/100 g body weight). A control group comprised rats not subjected to HS and receiving no fluid resuscitation or treatment. At 15 min after fluid resuscitation/treatment, the blood previously withdrawn was reinfused. At 24 h after HS, MAP was higher among the terlipressin-treated animals. Terlipressin also improved post-HS survival and provided significant improvements in glomerular/tubular function (creatinine clearance), neutrophil gelatinase-associated lipocalin expression, fractional excretion of sodium, aquaporin 2 expression, tubular injury, macrophage infiltration, interleukin 6 levels, interleukin 18 levels, and nuclear factor kappa B expression. In terlipressin-treated animals, there was also significantly higher angiotensin II type 1 receptor expression and normalization of arginine vasopressin 1a receptor expression. Terlipressin associated with conservative fluid management could be a viable therapy for HS-induced acute kidney injury, likely attenuating such injury by modulating the inflammatory response via the arginine vasopressin 1a receptor.


Subject(s)
Acute Kidney Injury , Shock, Hemorrhagic , Rats , Animals , Terlipressin/therapeutic use , Shock, Hemorrhagic/complications , Shock, Hemorrhagic/drug therapy , Rats, Wistar , Acute Kidney Injury/drug therapy , Acute Kidney Injury/etiology , Ringer's Lactate , Receptors, Vasopressin , Arginine Vasopressin
2.
Crit Care ; 19: 107, 2015 Mar 13.
Article in English | MEDLINE | ID: mdl-25888229

ABSTRACT

INTRODUCTION: We investigated whether treatment with terlipressin during recovery from hypotension due to haemorrhagic shock (HS) is effective in restoring cerebral perfusion pressure (CPP) and brain tissue markers of water balance, oxidative stress and apoptosis. METHODS: In this randomised controlled study, animals undergoing HS (target mean arterial pressure (MAP) 40 mmHg for 30 minutes) were randomised to receive lactated Ringer's solution (LR group; n =14; volume equal to three times the volume bled), terlipressin (TERLI group; n =14; 2-mg bolus), no treatment (HAEMO group; n =12) or sham (n =6). CPP, systemic haemodynamics (thermodilution technique) and blood gas analyses were registered at baseline, shock and 5, 30, 60 (T60), 90 and 120 minutes after treatment (T120). After the animals were killed, brain tissue samples were obtained to measure markers of water balance (aquaporin-4 (AQP4)), Na(+)-K(+)-2Cl(-) co-transporter (NKCC1)), oxidative stress (thiobarbituric acid reactive substances (TBARS) and manganese superoxide dismutase (MnSOD)) and apoptotic damage (Bcl-x and Bax). RESULTS: Despite the HS-induced decrease in cardiac output (CO) and hyperlactataemia, resuscitation with terlipressin recovered MAP and resulted in restoration of CPP and in cerebral protection expressed by normalisation of AQP4, NKCC1, TBARS and MnSOD expression and Bcl-x/Bax ratio at T60 and T120 compared with sham animals. In the LR group, CO and blood lactate levels were recovered, but the CPP and MAP were significantly decreased and TBARS levels and AQP4, NKCC1 and MnSOD expression and Bcl-x/Bax ratio were significantly increased at T60 and T120 compared with the sham group. CONCLUSIONS: During recovery from HS-induced hypotension, terlipressin was effective in normalising CPP and cerebral markers of water balance, oxidative damage and apoptosis. The role of this pressor agent on brain perfusion in HS requires further investigation.


Subject(s)
Cerebrovascular Circulation/drug effects , Hypotension/drug therapy , Lypressin/analogs & derivatives , Shock, Hemorrhagic/drug therapy , Vasoconstrictor Agents/therapeutic use , Animals , Disease Models, Animal , Fluid Therapy , Hemodynamics/drug effects , Hypotension/etiology , Lypressin/pharmacology , Lypressin/therapeutic use , Shock, Hemorrhagic/complications , Swine , Terlipressin , Vasoconstrictor Agents/pharmacology
3.
Epilepsy Res ; 108(4): 644-52, 2014 May.
Article in English | MEDLINE | ID: mdl-24630048

ABSTRACT

Manganese-enhanced MRI (MEMRI) has been considered a surrogate marker of Ca(+2) influx into activated cells and tracer of neuronal active circuits. However, the induction of status epilepticus (SE) by kainic acid does not result in hippocampal MEMRI hypersignal, in spite of its high cell activity. Similarly, short durations of status (5 or 15min) induced by pilocarpine did not alter the hippocampal MEMRI, while 30 min of SE even reduced MEMRI signal Thus, this study was designed to investigate possible explanations for the absence or decrease of MEMRI signal after short periods of SE. We analyzed hippocampal caspase-3 activation (to evaluate apoptosis), T2 relaxometry (tissue water content) and aquaporin 4 expression (water-channel protein) of rats subjected to short periods of pilocarpine-induced SE. For the time periods studied here, apoptotic cell death did not contribute to the decrease of the hippocampal MEMRI signal. However, T2 relaxation was higher in the group of animals subjected to 30min of SE than in the other SE or control groups. This result is consistent with higher AQP-4 expression during the same time period. Based on apoptosis and tissue water content analysis, the low hippocampal MEMRI signal 30min after SE can potentially be attributed to local edema rather than to cell death.


Subject(s)
Caspase 3/metabolism , Hippocampus/pathology , Status Epilepticus/pathology , Animals , Aquaporins/metabolism , Hippocampus/metabolism , Magnetic Resonance Imaging/methods , Male , Pilocarpine , Proto-Oncogene Proteins c-fos/metabolism , Rats , Status Epilepticus/chemically induced , Status Epilepticus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...