Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
PLoS Negl Trop Dis ; 17(9): e0011646, 2023 09.
Article in English | MEDLINE | ID: mdl-37729272

ABSTRACT

Sphingolipids (SLs) are essential components of all eukaryotic cellular membranes. In fungi, plants and many protozoa, the primary SL is inositol-phosphorylceramide (IPC). Trypanosoma cruzi is a protozoan parasite that causes Chagas disease (CD), a chronic illness for which no vaccines or effective treatments are available. IPC synthase (IPCS) has been considered an ideal target enzyme for drug development because phosphoinositol-containing SL is absent in mammalian cells and the enzyme activity has been described in all parasite forms of T. cruzi. Furthermore, IPCS is an integral membrane protein conserved amongst other kinetoplastids, including Leishmania major, for which specific inhibitors have been identified. Using a CRISPR-Cas9 protocol, we generated T. cruzi knockout (KO) mutants in which both alleles of the IPCS gene were disrupted. We demonstrated that the lack of IPCS activity does not affect epimastigote proliferation or its susceptibility to compounds that have been identified as inhibitors of the L. major IPCS. However, disruption of the T. cruzi IPCS gene negatively affected epimastigote differentiation into metacyclic trypomastigotes as well as proliferation of intracellular amastigotes and differentiation of amastigotes into tissue culture-derived trypomastigotes. In accordance with previous studies suggesting that IPC is a membrane component essential for parasite survival in the mammalian host, we showed that T. cruzi IPCS null mutants are unable to establish an infection in vivo, even in immune deficient mice.


Subject(s)
Chagas Disease , Leishmania major , Trypanosoma cruzi , Mice , Animals , Leishmania major/genetics , Cell Differentiation , Inositol/metabolism , Inositol/pharmacology , Mammals
2.
J Cell Sci ; 135(13)2022 07 01.
Article in English | MEDLINE | ID: mdl-35801807

ABSTRACT

The plasma membrane not only protects the cell from the extracellular environment, acting as a selective barrier, but also regulates cellular events that originate at the cell surface, playing a key role in various biological processes that are essential for the preservation of cell homeostasis. Therefore, elucidation of the mechanisms involved in the maintenance of plasma membrane integrity and functionality is of utmost importance. Cells have developed mechanisms to ensure the quality of proteins that inhabit the cell surface, as well as strategies to cope with injuries inflicted to the plasma membrane. Defects in these mechanisms can lead to the development or onset of several diseases. Despite the importance of these processes, a comprehensive and holistic perspective of plasma membrane quality control is still lacking. To tackle this gap, in this Review, we provide a thorough overview of the mechanisms underlying the identification and targeting of membrane proteins that are to be removed from the cell surface, as well as the membrane repair mechanisms triggered in both physiological and pathological conditions. A better understanding of the mechanisms underlying protein quality control at the plasma membrane can reveal promising and unanticipated targets for the development of innovative therapeutic approaches.


Subject(s)
Proteins , Cell Membrane/metabolism , Homeostasis , Proteins/metabolism
3.
Mol Immunol ; 149: 27-38, 2022 09.
Article in English | MEDLINE | ID: mdl-35709630

ABSTRACT

Parasitic protozoa are eukaryotic unicellular organisms that depend on a variety of living organisms and can develop intra- and extracellularly inside their hosts. In humans, these parasites cause diseases with a significant impact on public health, such as malaria, toxoplasmosis, Chagas disease, leishmaniasis and amebiasis. The ability of a parasite in establishing a successful infection depends on a series of intricate evolutionarily selected adaptations, which include the development of molecular and cellular strategies to evade the host immune system effector mechanisms. The complement system is one of the main effector mechanisms and the first humoral shield of hosts innate immunity against pathogens. For unicellular pathogens, such as protozoa, bacteria and fungi, the activation of the complement system may culminate in the elimination of the invader mainly via 1- the formation of a pore that depolarizes the plasma membrane of the parasite, causing cell lysis; 2- opsonization and killing by phagocytes; 3- increasing vascular permeability while also recruiting neutrophils to the site of activation. Numerous strategies to avoid complement activation have been reported for parasitic protozoa, such as 1- sequestration of complement system regulatory proteins produced by the host, 2- expression of complement system regulatory proteins, 3- proteolytic cleavage of different complement effector molecules, 4- formation of a physical glycolipid barrier that prevents deposition of complement molecules on the plasma membrane, and 5- removal, by endocytosis, of complement molecules bound to plasma membrane. In this review, we revisit the different strategies of blocking various stages of complement activation described for the main species of parasitic protozoa, present the most recent discoveries in the field and discuss new perspectives on yet neglected strategies and possible new evasion mechanisms.


Subject(s)
Leishmaniasis , Parasites , Animals , Complement Activation , Complement System Proteins , Homicide , Humans
4.
Mol Immunol ; 141: 43-52, 2022 01.
Article in English | MEDLINE | ID: mdl-34798497

ABSTRACT

Although the genus Trichoderma is widely used as a biocontrol agent in crops, little is known about its potential impact on the human immune system. In mice, our group has shown that exposition to T. asperelloides spores lead to reduced neutrophil counts in the peripheral blood and in the peritoneal cavity. In addition, T. stromaticum spores produced an inflammatory infiltrate on mice lungs, reducing the levels of IFN-γ and IL-10 cytokines, reactive oxygen species, and receptors of microbial patterns. Here we demonstrate that the interaction of human peripheral neutrophils with T. stromaticum spores also leads to a reduced release of neutrophil extracellular traps (NETs) after induction with the NET-inducer agent phorbol 12-myristate 13-acetate. This interaction also reduced the expression levels of multiple microRNAs, such as miR-221, miR-222, miR-223 and miR-27a, as well as genes related to NETs, such as ELANE, MPO and PADI4. Furthermore, T. stromaticum spores affected the expression of the genes SOCS3, TLR4, CSNK2A1, GSDMD, and NFFKBIA, related to the activation of inflammatory immune responses in neutrophils. Overall, our results suggest T. stromaticum as a potential NET inhibitor and as an immunomodulatory agent. Since this fungus is used as biocontrol in crops, our findings point to the importance of advancing our knowledge on the effects of this bioagent on the human immune system. Finally, the study of the active compounds produced by the fungus is also important for the prospection of new drugs that could be used to block the exacerbation of inflammatory immune responses present in several human diseases.


Subject(s)
Extracellular Traps/immunology , Hypocreales/immunology , Leukocytes, Mononuclear/immunology , Neutrophils/immunology , Spores/immunology , Cells, Cultured , Cytokines/immunology , Humans , Immunity/immunology , Immunologic Factors/immunology , Inflammation/immunology , MicroRNAs/immunology
5.
Sci Rep ; 11(1): 17077, 2021 08 23.
Article in English | MEDLINE | ID: mdl-34426608

ABSTRACT

The capacity of tumor cells to shift dynamically between different states could be responsible for chemoresistance and has been commonly linked to the acquisition of stem cell properties. Here, we have evaluated the phenotype switching associated with drug resistance in breast cancer cell lines and cell lineage obtained from Brazilian patients. We have highlighted the role of the cancer stem cell marker CD24 in the dynamics of cell plasticity and the acquirement of drug resistance. We showed that the translocation of CD24 from cytosol to cell membrane is a triggering event for the phenotype change of breast tumor cells exposed to drug stress. Here, we provide evidence that the phenotype switching is due to the presence of a cytosolic pool of CD24. Importantly, the cellular localization of CD24 was correlated with the changes in the dynamics of p38 MAPK activation. A strong and continuous phosphorylation of the p38 MAPK led to the overexpression of Bcl-2 after treatment in persistent cells presenting high density of CD24 on cell membrane. This phenotype enabled the cells to enter in slow-down of cell cycle, after which several weeks later, the dormant cells proliferated again. Importantly, the use of a p38 activity inhibitor sensitized cells to drug treatment and avoided chemoresistance.


Subject(s)
Biomarkers, Tumor/metabolism , Breast Neoplasms/metabolism , CD24 Antigen/metabolism , Drug Resistance, Neoplasm , Cell Line, Tumor , Cell Membrane/metabolism , Cytosol/metabolism , Female , Humans , Protein Transport , p38 Mitogen-Activated Protein Kinases/metabolism
6.
Exp Parasitol ; 221: 108048, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33307096

ABSTRACT

Leishmaniasis is a disease caused by trypanosomatid protozoa of the genus Leishmania. In the Americas, the species Leishmania amazonensis is predominantly associated with American cutaneous leishmaniasis (ACL) while L. infantum is an agent of visceral leishmaniasis (VL). The genome sequences of Leishmania spp. have shown that each genome can contain about 8000 genes encoding proteins, more than half of which have an unknown function (''hypotheticals") at the time of publication. To understand the biology and genome of the organisms, it is important to discover the function of these "hypothetical" proteins; however, few studies have focused on their characterizations. Previously, LinJ.30.3360 (a protein with unknown function) was identified as immunogenic to canine serum with VL and a good antigen to diagnose the visceral form in dogs. Here, we show that the LinJ.30.3360 protein is conserved in L. infantum, L. tarantolae, L. donovani, L. major, L. mexicana, L. braziliensis, L. panamensis, Leptomonas pyrrhocoris, and Leptomonas seymouri. It has been annotated as a MORN (Membrane Occupation and Recognition Nexus) domain protein. However, since the function of this motif is unknown, functional inferences based on the primary sequence are not possible. The protein has a folded ß-leaf secondary structure, and phosphorylation was the only post-translational modification (PTM) found using prediction approach. Experiments have shown that it is located close to the flagellar pocket and presents similar abundance in both L. amazonensis and L. infantum. Furthermore, because it is a conserved protein in trypanosomatids but not in mammals and also because of its antigenicity, LinJ.30.3360 may constitute a potential drug target and/or vaccine for leishmaniasis.


Subject(s)
Leishmania infantum/chemistry , Leishmania mexicana/chemistry , Protozoan Proteins/chemistry , Animals , Blotting, Western , Conserved Sequence , Immunohistochemistry , Leishmania infantum/genetics , Leishmania mexicana/genetics , Male , Microscopy, Fluorescence , Microscopy, Immunoelectron , Protein Processing, Post-Translational , Protein Structure, Secondary , Protozoan Proteins/genetics , Protozoan Proteins/isolation & purification , Protozoan Proteins/metabolism , Rabbits , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Analysis, Protein
8.
Article in English | MEDLINE | ID: mdl-32760675

ABSTRACT

The Trichoderma genus comprises several species of fungi whose diversity of secondary metabolites represents a source of potential molecules with medical application. Because of increased pathogen resistance and demand for lower production costs, the search for new pharmacologically active molecules effective against pathogens has become more intense. This is particularly evident in the case of American cutaneous leishmaniasis due to the high toxicity of current treatments, parenteral administration, and increasing rate of refractory cases. We have previously shown that a fungus from genus Trichoderma can be used for treating cerebral malaria in mouse models and inhibit biofilm formation. Here, we evaluated the effect of the ethanolic extract of Trichoderma asperelloides (Ext-Ta) and its fractions on promastigotes and amastigotes of Leishmania amazonensis, a major causative agent of cutaneous leishmaniasis in the New World. Ext-Ta displayed leishmanicidal action on L. amazonensis parasites, and its pharmacological activity was associated with the low-molecular-weight fraction (LMWF) of Ext-Ta. Ultrastructural analysis demonstrated morphological alterations in the mitochondria and the flagellar pocket of promastigotes, with increased lipid body and acidocalcisome formation, microtubule disorganization of the cytoplasm, and intense vacuolization of the cytoplasm when amastigotes were present. We suggest the antiparasitic activity of Trichoderma fungi as a promising tool for developing chemotherapeutic leishmanicidal agents.


Subject(s)
Leishmania mexicana , Leishmaniasis, Cutaneous , Trichoderma , Animals , Hypocreales , Mice , Mice, Inbred BALB C , Plant Extracts/pharmacology
9.
J Cell Sci ; 133(4)2020 02 20.
Article in English | MEDLINE | ID: mdl-32079731

ABSTRACT

Intracellular parasites from the genera Toxoplasma, Plasmodium, Trypanosoma, Leishmania and from the phylum Microsporidia are, respectively, the causative agents of toxoplasmosis, malaria, Chagas disease, leishmaniasis and microsporidiosis, illnesses that kill millions of people around the globe. Crossing the host cell plasma membrane (PM) is an obstacle these parasites must overcome to establish themselves intracellularly and so cause diseases. The mechanisms of cell invasion are quite diverse and include (1) formation of moving junctions that drive parasites into host cells, as for the protozoans Toxoplasma gondii and Plasmodium spp., (2) subversion of endocytic pathways used by the host cell to repair PM, as for Trypanosoma cruzi and Leishmania, (3) induction of phagocytosis as for Leishmania or (4) endocytosis of parasites induced by specialized structures, such as the polar tubes present in microsporidian species. Understanding the early steps of cell entry is essential for the development of vaccines and drugs for the prevention or treatment of these diseases, and thus enormous research efforts have been made to unveil their underlying biological mechanisms. This Review will focus on these mechanisms and the factors involved, with an emphasis on the recent insights into the cell biology of invasion by these pathogens.


Subject(s)
Chagas Disease , Leishmaniasis , Parasites , Plasmodium , Toxoplasma , Trypanosoma cruzi , Animals
10.
Bio Protoc ; 10(15): e3703, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-33659367

ABSTRACT

Cell signalling, cell secretion, and plasma membrane repair are processes that critically rely on intracellular vesicles, important components of the endocytic and secretory pathways. More specifically, the strategic distribution of intracellular vesicles is important for diverse cellular processes. The method presented here is a simple, affordable, and efficient tool to analyze the distribution of intracellular vesicles such as lysosomes, endosomes, Golgi vesicles or secretory granules under different experimental conditions. The method is an accessible way to analyze the density and dispersion of intracellular vesicles by combining immunofluorescence with pixel-based quantification software (e.g., ImageJ/FIJI). This protocol can be used widely within the scientific community because it utilizes ImageJ/FIJI, an open source software that is free. By tracking fluorescent vesicles based on their position relative to cell nuclei we are able to quantify and analyze their distribution throughout the cell.

11.
Biochim Biophys Acta Biomembr ; 1862(3): 183139, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31812625

ABSTRACT

Plasma membrane repair (PMR) is an important process for cell homeostasis, especially for cells under constant physical stress. Repair involves a sequence of Ca2+-dependent events, including lysosomal exocytosis and subsequent compensatory endocytosis. Cholesterol sequestration from plasma membrane causes actin cytoskeleton reorganization and polymerization, increasing cell stiffness, which leads to exocytosis and reduction of a peripheral pool of lysosomes involved in PMR. These changes in mechanical properties are similar to those observed in cells exposed to oxidized Low Density Lipoprotein (oxLDL), a key molecule during atherosclerosis development. Using a human umbilical vein endothelial cell line (EAhY926) we evaluated the influence of mechanical modulation induced by oxLDL in PMR and its effect in endothelial fragility. Similar to MßCD (a drug capable of sequestering cholesterol) treatment, oxLDL exposure led to actin reorganization and de novo polymerization, as well as an increase in cell rigidity and lysosomal exocytosis. Additionally, for both MßCD and oxLDL treated cells, there was an initial increase in endocytic events, likely triggered by the peak of exocytosis induced by both treatments. However, no further endocytic events were observed, suggesting that constitutive endocytosis is blocked upon treatment and that the reorganized cytoskeleton function as a mechanical barrier to membrane traffic. Finally, the increase in cell rigidity renders cells more prone to mechanical injury. Together, these data show that mechanical modulation induced by oxLDL exposure not only alters membrane traffic in cells, but also makes them more susceptible to mechanical injury, which may likely contribute to the initial steps of atherosclerosis development.


Subject(s)
Cell Membrane/metabolism , Lipoproteins, LDL/metabolism , Actins/metabolism , Cell Membrane/physiology , Cell Movement , Cells, Cultured , Cholesterol/metabolism , Cytoskeleton/metabolism , Endocytosis/physiology , Endothelial Cells/metabolism , Endothelium, Vascular/metabolism , Exocytosis/physiology , Human Umbilical Vein Endothelial Cells , Humans , Lipoproteins, LDL/physiology , Lysosomes/metabolism , Membranes/metabolism , Protein Transport
12.
Curr Top Membr ; 84: 1-16, 2019.
Article in English | MEDLINE | ID: mdl-31610859

ABSTRACT

The ability of repairing damages on the plasma membrane is crucial for cell survival. When damaged, eukaryotic cells are able to recover plasma membrane integrity within a few seconds, thus avoiding cytoplasm leakage and cell death. The process is driven by the influx of extracellular calcium which triggers a multitude of intracellular effects that participate in the process of plasma membrane resealing. One of the landmarks of plasma membrane repair is the triggering of intracellular vesicles recruitment and their exocytosis at damage sites. Since lysosomes are able to respond to calcium influx and that some of the lysosomal enzymes exocytosed after plasma membrane permeabilization are essential to restore cell integrity, these organelles have emerged as essential for the maintenance of plasma membrane integrity. Here we summarize the scientific evidences showing the involvement of lysosomes in plasma membrane repair that allowed researchers to propose a totally different function for this famous organelle.


Subject(s)
Cell Membrane/metabolism , Lysosomes/metabolism , Animals , Calcium/metabolism , Endocytosis , Exocytosis , Humans
13.
J Cell Sci ; 132(6)2019 03 25.
Article in English | MEDLINE | ID: mdl-30814331

ABSTRACT

Intracellular parasites of the genus Leishmania are the causative agents of leishmaniasis. The disease is transmitted by the bite of a sand fly vector, which inoculates the parasite into the skin of mammalian hosts, including humans. During chronic infection the parasite lives and replicates inside phagocytic cells, notably the macrophages. An interesting, but overlooked finding, is that other cell types and even non-phagocytic cells have been found to be infected by Leishmania spp. Nevertheless, the mechanisms by which Leishmania invades such cells had not been previously studied. Here, we show that L. amazonensis can induce their own entry into fibroblasts independently of actin cytoskeleton activity, and, thus, through a mechanism that is distinct from phagocytosis. Invasion involves subversion of host cell functions, such as Ca2+ signaling and recruitment and exocytosis of host cell lysosomes involved in plasma membrane repair.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Cell Membrane/parasitology , Fibroblasts/parasitology , Leishmania mexicana , Lysosomes/parasitology , Actin Cytoskeleton/parasitology , Animals , Calcium Signaling , Cell Line , Cell Membrane/metabolism , Exocytosis , Host-Parasite Interactions , Leishmania mexicana/metabolism , Leishmania mexicana/parasitology , Macrophages/parasitology , Mice , Phagocytosis
14.
J Immunol ; 202(6): 1807-1814, 2019 03 15.
Article in English | MEDLINE | ID: mdl-30718300

ABSTRACT

The purpose of this study was to investigate the role of pentraxin 3 (PTX3), a pivotal component of the innate immune system, in gout. Levels of PTX3 and IL-1ß in human samples were evaluated by ELISA. Development of murine gout was evaluated through the levels of cytokines (PTX3, CXCL1, and IL-1ß) and neutrophil recruitment into the joint cavity. Phagocytosis of monosodium urate (MSU) crystals and caspase-1 activation were determined by flow cytometer. Acute gout patients showed elevated concentration of PTX3 in plasma and synovial fluid as compared with healthy and osteoarthritic subjects. Moreover, there was a positive correlation between intra-articular PTX3 and IL-1ß levels. PTX3 was induced in the periarticular tissue of mice postinjection of MSU crystals. Importantly, Ptx3-deficient mice showed reduced inflammation in response to MSU crystal injection compared with wild-type mice, including reduction of neutrophil recruitment into the joint cavity and IL-1ß and CXCL1 production. Interestingly, addition of PTX3 in vitro enhanced MSU crystal phagocytosis by monocytes and resulted in higher production of IL-1ß by macrophages. This contribution of PTX3 to the phagocytosis of MSU crystals and consequent production of IL-1ß occurred through a mechanism mainly dependent on FcγRIII. Thus, our results suggest that PTX3 acts as a humoral pattern recognition molecule in gout facilitating MSU crystal phagocytosis and contributing to the pathogenesis of gouty arthritis.


Subject(s)
Arthritis, Gouty/immunology , C-Reactive Protein/immunology , Interleukin-1beta/immunology , Phagocytosis/immunology , Serum Amyloid P-Component/immunology , Uric Acid/immunology , Animals , Arthritis, Gouty/metabolism , Arthritis, Gouty/pathology , C-Reactive Protein/metabolism , Humans , Interleukin-1beta/metabolism , Mice , Mice, Inbred C57BL , Serum Amyloid P-Component/metabolism , Uric Acid/metabolism
15.
Parasitology ; 146(6): 716-727, 2019 May.
Article in English | MEDLINE | ID: mdl-30588899

ABSTRACT

Leishmania (Viannia) guyanensis is one species that causes cutaneous leishmaniasis in the New World. The incidence of infections with this parasite is probably underestimated and few studies exist on this species, despite its epidemiological importance. In particular, there are no studies concerning L. guyanensis metacyclogenesis and no technique for obtaining metacyclic promastigotes for this species is presently available. Here, we have studied L. guyanensis metacyclogenesis in axenic culture, describing the main changes that occur during this process, namely, in morphology and size, sensitivity to complement-mediated lysis, surface carbohydrates and infectivity to macrophages. We have shown that metacyclogenesis in L. guyanensis promastigotes is basically complete on the 4th day of culture, as determined by decreased body size, increased flagellum length, resistance to complement-mediated lysis and infectivity. We have also found that only a fraction of the parasites is agglutinated by Bauhinia purpurea lectin. The non-agglutinated parasites, which also peaked on the 4th day of culture, had all morphological traits typical of the metacyclic stage. This is the first report describing metacyclogenesis in L. guyanensis axenic promastigotes and a simple and efficient method for the purification of metacyclic forms. Furthermore, a model of human macrophage infection with L. guyanensis was established.

16.
Sci Rep ; 8(1): 8762, 2018 06 08.
Article in English | MEDLINE | ID: mdl-29884876

ABSTRACT

Clearance of non-infected red blood cells (nRBCs) is one of the main components of anemia associated with Plasmodium vivax malaria. Recently, we have shown that anemic patients with P. vivax infection had elevated levels of anti-RBCs antibodies, which could enhance in vitro phagocytosis of nRBCs and decrease their deformability. Using immunoproteomics, here we characterized erythrocytic antigens that are differentially recognized by autoantibodies from anemic and non-anemic patients with acute vivax malaria. Protein spots exclusively recognized by anemic P. vivax-infected patients were identified by mass spectrometry revealing band 3 and spectrin as the main targets. To confirm this finding, antibody responses against these specific proteins were assessed by ELISA. In addition, an inverse association between hemoglobin and anti-band 3 or anti-spectrin antibodies levels was found. Anemic patients had higher levels of IgG against both band 3 and spectrin than the non-anemic ones. To determine if these autoantibodies were elicited because of molecular mimicry, we used in silico analysis and identified P. vivax proteins that share homology with human RBC proteins such as spectrin, suggesting that infection drives autoimmune responses. These findings suggest that band 3 and spectrin are potential targets of autoantibodies that may be relevant for P. vivax malaria-associated anemia.


Subject(s)
Anemia/complications , Anion Exchange Protein 1, Erythrocyte/immunology , Autoantibodies/immunology , Erythrocytes/immunology , Malaria, Vivax/complications , Plasmodium vivax/immunology , Spectrin/immunology , Adult , Anemia/immunology , Humans , Immunoglobulin G/immunology , Malaria, Vivax/immunology
17.
Hum Mol Genet ; 27(5): 811-822, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29301038

ABSTRACT

Gaucher disease (GD) is caused by bi-allelic mutations in GBA1, the gene that encodes acid ß-glucocerebrosidase (GCase). Individuals affected by GD have hematologic, visceral and bone abnormalities, and in severe cases there is also neurodegeneration. To shed light on the mechanisms by which mutant GBA1 causes bone disease, we examined the ability of human induced pluripotent stem cells (iPSC) derived from patients with Types 1, 2 and 3 GD, to differentiate to osteoblasts and carry out bone deposition. Differentiation of GD iPSC to osteoblasts revealed that these cells had developmental defects and lysosomal abnormalities that interfered with bone matrix deposition. Compared with controls, GD iPSC-derived osteoblasts exhibited reduced expression of osteoblast differentiation markers, and bone matrix protein and mineral deposition were defective. Concomitantly, canonical Wnt/ß catenin signaling in the mutant osteoblasts was downregulated, whereas pharmacological Wnt activation with the GSK3ß inhibitor CHIR99021 rescued GD osteoblast differentiation and bone matrix deposition. Importantly, incubation with recombinant GCase (rGCase) rescued the differentiation and bone-forming ability of GD osteoblasts, demonstrating that the abnormal GD phenotype was caused by GCase deficiency. GD osteoblasts were also defective in their ability to carry out Ca2+-dependent exocytosis, a lysosomal function that is necessary for bone matrix deposition. We conclude that normal GCase enzymatic activity is required for the differentiation and bone-forming activity of osteoblasts. Furthermore, the rescue of bone matrix deposition by pharmacological activation of Wnt/ß catenin in GD osteoblasts uncovers a new therapeutic target for the treatment of bone abnormalities in GD.


Subject(s)
Gaucher Disease/pathology , Induced Pluripotent Stem Cells/pathology , Lysosomes/pathology , Osteoblasts/pathology , Bone Matrix/pathology , Case-Control Studies , Cell Differentiation/drug effects , Cells, Cultured , Exocytosis/genetics , Gaucher Disease/genetics , Glucosylceramidase/genetics , Glucosylceramidase/metabolism , Humans , Induced Pluripotent Stem Cells/physiology , Lysosomes/genetics , Mutation , Osteoblasts/drug effects , Osteoblasts/metabolism , Pyridines/pharmacology , Pyrimidines/pharmacology , Wnt Signaling Pathway , beta Catenin/metabolism
18.
PLoS Negl Trop Dis ; 11(6): e0005657, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28586379

ABSTRACT

Trypanosoma cruzi enters host cells by subverting the mechanism of cell membrane repair. In this process, the parasite induces small injuries in the host cell membrane leading to calcium entry and lysosomal exocytosis, which are followed by compensatory endocytosis events that drive parasites into host cells. We have previously shown that absence of both LAMP-1 and 2, major components of lysosomal membranes, decreases invasion of T. cruzi into host cells, but the mechanism by which they interfere with parasite invasion has not been described. Here we investigated the role of these proteins in parasitophorous vacuole morphology, host cell lysosomal exocytosis, and membrane repair ability. First, we showed that cells lacking only LAMP-2 present the same invasion phenotype as LAMP1/2-/- cells, indicating that LAMP-2 is an important player during T. cruzi invasion process. Second, neither vacuole morphology nor lysosomal exocytosis was altered in LAMP-2 lacking cells (LAMP2-/- and LAMP1/2-/- cells). We then investigated the ability of LAMP-2 deficient cells to perform compensatory endocytosis upon lysosomal secretion, the mechanism by which cells repair their membrane and T. cruzi ultimately enters cells. We observed that these cells perform less endocytosis upon injury when compared to WT cells. This was a consequence of impaired cholesterol traffic in cells lacking LAMP-2 and its influence in the distribution of caveolin-1 at the cell plasma membrane, which is crucial for plasma membrane repair. The results presented here show the major role of LAMP-2 in caveolin traffic and membrane repair and consequently in T. cruzi invasion.


Subject(s)
Cell Membrane/physiology , Fibroblasts/parasitology , Lysosomal Membrane Proteins/metabolism , Lysosomal-Associated Membrane Protein 2/metabolism , Trypanosoma cruzi/physiology , Animals , Caveolin 1/genetics , Caveolin 1/metabolism , Endocytosis , Fibroblasts/metabolism , Fibroblasts/ultrastructure , Gene Expression Regulation/physiology , Lysosomal-Associated Membrane Protein 2/genetics , Lysosomal Membrane Proteins/genetics , Mice, Knockout
19.
JCI Insight ; 1(17): e86330, 2016 Oct 20.
Article in English | MEDLINE | ID: mdl-27777970

ABSTRACT

Mutations of the Plekhm1 gene in humans and rats cause osteopetrosis, an inherited bone disease characterized by diminished bone resorption by osteoclasts. PLEKHM1 binds to RAB7 and is critical for lysosome trafficking. However, the molecular mechanisms by which PLEKHM1 regulates lysosomal pathways remain unknown. Here, we generated germline and conditional Plekhm1-deficient mice. These mice displayed no overt abnormalities in major organs, except for an increase in trabecular bone mass. Furthermore, loss of PLEKHM1 abrogated the peripheral distribution of lysosomes and bone resorption in osteoclasts. Mechanistically, we indicated that DEF8 interacts with PLEKHM1 and promotes its binding to RAB7, whereas the binding of FAM98A and NDEL1 with PLEKHM1 connects lysosomes to microtubules. Importantly, suppression of these proteins results in lysosome positioning and bone resorption defects similar to those of Plekhm1-null osteoclasts. Thus, PLHKEM1, DEF8, FAM98A, and NDEL1 constitute a molecular complex that regulates lysosome positioning and secretion through RAB7.


Subject(s)
Bone Resorption , Lysosomes/physiology , Osteoclasts/physiology , Vesicular Transport Proteins/physiology , rab GTP-Binding Proteins/physiology , Adaptor Proteins, Signal Transducing , Animals , Autophagy-Related Proteins , Cell Differentiation , Cells, Cultured , Endosomes , Gene Deletion , Homeostasis , Mice , Mice, Inbred C57BL , Vesicular Transport Proteins/genetics , rab7 GTP-Binding Proteins
20.
PLoS One ; 11(3): e0152583, 2016.
Article in English | MEDLINE | ID: mdl-27028538

ABSTRACT

Eukaryotic cells rapidly repair wounds on their plasma membrane. Resealing is Ca(2+)-dependent, and involves exocytosis of lysosomes followed by massive endocytosis. Extracellular activity of the lysosomal enzyme acid sphingomyelinase was previously shown to promote endocytosis and wound removal. However, whether lysosomal proteases released during cell injury participate in resealing is unknown. Here we show that lysosomal proteases regulate plasma membrane repair. Extracellular proteolysis is detected shortly after cell wounding, and inhibition of this process blocks repair. Conversely, surface protein degradation facilitates plasma membrane resealing. The abundant lysosomal cysteine proteases cathepsin B and L, known to proteolytically remodel the extracellular matrix, are rapidly released upon cell injury and are required for efficient plasma membrane repair. In contrast, inhibition of aspartyl proteases or RNAi-mediated silencing of the lysosomal aspartyl protease cathepsin D enhances resealing, an effect associated with the accumulation of active acid sphingomyelinase on the cell surface. Thus, secreted lysosomal cysteine proteases may promote repair by facilitating membrane access of lysosomal acid sphingomyelinase, which promotes wound removal and is subsequently downregulated extracellularly by a process involving cathepsin D.


Subject(s)
Cathepsins/metabolism , Cell Membrane/metabolism , Cysteine Proteases/metabolism , Lysosomes/enzymology , Proteolysis , Calcium/metabolism , HeLa Cells , Humans , Sphingomyelin Phosphodiesterase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...