Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 12(49): 54862-54875, 2020 Dec 09.
Article in English | MEDLINE | ID: mdl-33237742

ABSTRACT

Long-term stability of perovskite solar cells (PSCs) is one of the main issues to be solved for forthcoming commercialization of this technology. In this work, thermosetting polyurethane (PU)-based resins are proposed as effective encapsulants for perovskite solar cells to prevent degradation caused by both moisture and oxygen. Application consists of drop-casting the precursor mixture directly over the devices followed by in situ polymerization, avoiding the use of other adhesives. PUs are cost-effective, lightweight, thermal, and light-stable materials whose mechanical, chemical, and physical properties can be easily tuned by thoughtful choice of their precursor. Encapsulated PSCs show extremely good stability when stored under ambient light (maximum, 1000 lux), controlled humidity (28-65%), and temperature (18-30 °C) by retaining 94% of the initial power conversion efficiency after 2500 h (4 months), whereas control devices lose 90% of their performance after 500 h (T80 = 37 h); once stored according to ISOS-D-1, PU-protected devices showed T80 > 1200 h. Encapsulated devices are stable even when immersed in pure water. The demonstration of PUs as promising solution-processed encapsulant materials for PSCs can pave the way for these to become a cost-effective encapsulation route alternative for future industrialization of this technology.

2.
Nanotechnology ; 31(44): 445201, 2020 Oct 30.
Article in English | MEDLINE | ID: mdl-32679576

ABSTRACT

Recent research is a testimony to the fact that perovskite material based solar cells are most efficient since they exhibit high power conversion efficiency and low cost of fabrication. Various perovskite materials display hysteresis in their current-voltage characteristic which accounts for memory behaviour. In this paper, we demonstrate efficient non-volatile memory devices based on hybrid organic-inorganic perovskite (CH3NH3PbI3) as a resistive switching layer on a Glass/Indium Tin Oxide (ITO) substrate. Our perovskite solar cells have been developed over the fully solution processed electron transport layer (ETL) which is a combination of SnO2 and mesoporous (m)-TiO2 scaffold layers. Hysteresis behaviour was observed in the current-voltage analysis achieving high ratio of ON & OFF current under dark and ambient conditions. Proposed perovskite-based Glass/ITO/SnO2/m-TiO2/CH3NH3PbI3/Au device has a hole transport layer (HTL) free structure, which is mainly responsible for a large ratio of ON & OFF current. The presence of voids in the scaffold m-TiO2 layer are also accountable for increasing electron/hole path length which escalates the recombination rate at the surface of the ETL/perovskite interface resulting in large hysteresis in the I-V curve. This memristor device operates at a low energy due to SnO2 layer's higher electron mobility and wide energy band gap. Our experimental results also show the dependency of voltage scan range & rate of scanning on the hysteresis behaviour in dark conditions. This memristive behaviour of the proposed device depicts drift in hysteresis loop with respect to the number of cycles, which would have a significant impact in neuromorphic applications. Moreover, due to the identical fabrication process of the proposed perovskite-based memristor device and perovskite solar cells, this device could be integrated inside a photovoltaic array to work as a power-on-chip device, where generation and computation could be possible on the same substrate for memory and neuromorphic applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...