Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Life Sci ; 278: 119582, 2021 Aug 01.
Article in English | MEDLINE | ID: mdl-33961856

ABSTRACT

Opioids are the first-line treatment for cancer pain. Incomplete pain relief and the high rate of adverse effects of these compounds bring a need to combine them with other drugs acting on different targets. AIMS: We here evaluate the antinociceptive interaction and adverse events of methadone combined with recombinant Phα1ß, an analgesic toxin from Phoneutria nigriventer. MAIN METHODS: Melanoma was produced by intraplantar inoculation of B16-F10 cells into the right paw. von Frey filaments measured the paw-withdrawal threshold after administration of methadone, Phα1ß, and their combination. The degree of interaction was evaluated using isobolographic analysis. Spontaneous performance and forced motor performance were assessed with the open-field and rotarod tests, respectively. Intestinal function was evaluated by the distance traveled by charcoal and opioid tolerance was induced by daily morphine injections. KEY FINDINGS: Co-administration of Phα1ß with methadone synergistically reverses the melanoma-induced mechanical hypersensitivity. No motor alterations were observed but mild alterations on intestinal function after treatment with the combination that was also capable of restoring morphine analgesia in the tail-flick test after an opioid-induced tolerance. SIGNIFICANCE: Combinatorial treatment with Phα1ß and methadone produces synergistic analgesic potentiation with potential implications to pain treatment even under opioid tolerance conditions.


Subject(s)
Analgesics/pharmacology , Cancer Pain/drug therapy , Methadone/administration & dosage , Pain Management/methods , Spider Venoms/administration & dosage , Analgesics, Opioid/pharmacology , Animals , Behavior, Animal , Calcium Channel Blockers/pharmacology , Drug Synergism , Drug Therapy, Combination , Drug Tolerance , Gastrointestinal Tract/drug effects , Male , Melanoma, Experimental/metabolism , Mice , Mice, Inbred C57BL , Neoplasm Transplantation , Neoplasms/complications , Time Factors
2.
Toxicon ; 188: 80-88, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33038354

ABSTRACT

Opioids are the "gold standard" treatment for postoperative pain, but these drugs also have limiting adverse effects. Thus, adjuvant drugs might be useful in opioid therapy for postoperative pain. The aim of the present study was to evaluate the effect of Phα1ß, a dual blocker of Cav2 and TRPA1 channels, on antinociceptive and adverse actions of morphine in a model of postoperative pain. Phα1ß (100-300 pmol/site) or morphine (3-10 mg/kg), alone, largely reduced postoperative nociception. However, Phα1ß (100 pmol/site) or morphine (10 mg/kg) also produced motor impairment. Lower doses of Phα1ß (30 pmol/site) or morphine (1 mg/kg), that did not have an effect alone, showed antinociceptive effect when concomitantly administrated. Moreover, co-administration of Phα1ß (30 pmol/site) with morphine (1 or 10 mg/kg) was unable to cause motor impairment. Preoperative repeated treatment with morphine increased the expression of Cav2 and TRPA1 channels in spinal cord, and caused tolerance and withdrawal syndrome, which were reversed with a single injection of Phα1ß (30 pmol/site). When injected postoperatively, escalating doses of morphine worsened postoperative hyperalgesia, induced tolerance, and withdrawal syndrome. Similarly, Phα1ß (30 pmol/site) reversed these adverse effects. Single or repeated morphine caused constipation, which was not altered by Phα1ß. Thus, a low dose of Phα1ß potentiated the analgesia, and reversed some adverse effects of morphine on operated mice, indicating the potential use of this agent as an adjuvant drug in opioid therapy for postoperative pain.


Subject(s)
Analgesics, Opioid/therapeutic use , Chemotherapy, Adjuvant/methods , Pain, Postoperative/drug therapy , Spider Venoms/therapeutic use , Analgesics , Animals , Calcium Channels, N-Type/metabolism , Hyperalgesia/chemically induced , Mice , Morphine , Spider Venoms/pharmacology , TRPA1 Cation Channel/metabolism
3.
J Perianesth Nurs ; 35(6): 580-585.e2, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32855054

ABSTRACT

PURPOSE: Abdominal hysterectomy is one of the most commonly performed gynecologic surgical procedures and is frequently associated with moderate to severe pain. The present study compared the effects of morphine and ketamine on postoperative analgesia, hemodynamic stability, and postoperative adverse effects in patients who underwent abdominal hysterectomy. DESIGN: This randomized controlled trial compares the effects of morphine plus adjuvants to those of ketamine plus adjuvants, administered as spinal anesthetic agents in patients who underwent abdominal hysterectomy. METHODS: Eighty patients were randomly assigned to two different groups: group M (morphine, 40 mcg) and group K (ketamine, 20 mg); the anesthetic agents were combined with equal quantities of other adjuvants. Postoperative analgesia was evaluated by means of a numeric pain rating scale; adverse effects (pruritus, nausea and vomiting, urinary retention, respiratory depression, and changes in bowel habits) at specific postoperative time intervals of T1 (4 hours), T2 (12 hours), and T3 (24 hours) were documented and compared. Hemodynamic stability was assessed intraoperatively. FINDINGS: Both groups displayed similar patient characteristics, comorbidities, paravertebral block level, and intraoperative hemodynamics. The present study observed a significant difference in postoperative analgesia between the two groups, 12 hours after the surgery, with group M exhibiting better results, compared with group K (P = .004). The pain scores obtained from group K were consistent with the amount of rescue medication (tramadol) administered to the subjects in the group, which showed a concomitant higher consumption of tramadol, compared with group M (42.5 and 71.8 mg in group M and group K, respectively, P = .011). Group M showed a higher incidence of pruritus, changes in bowel habits, and constipation compared with group K. CONCLUSIONS: Compared with ketamine, intrathecal morphine obtained better postoperative analgesia up to 12 hours after surgery, with a higher incidence of pruritus without any significant change in other variables.


Subject(s)
Ketamine , Morphine/therapeutic use , Pain, Postoperative/drug therapy , Analgesia, Patient-Controlled , Analgesics, Opioid , Double-Blind Method , Female , Humans , Hysterectomy/adverse effects , Ketamine/therapeutic use
4.
Data Brief ; 14: 440-452, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28831406

ABSTRACT

Determining antinociceptive interaction between Phα1ß toxin (a voltage gated calcium channel blocker) and SB366791 (selective TRPV1 antagonist) may have both clinical and mechanistic implications for the pain management. This data in brief article is associated to the research paper "Synergistic antinociceptive effect of a calcium channel blocker and a TRPV1 blocker in an acute pain model in mice". This material supports the isobolographic analysis performed with the above drugs and shows: data of the dose response curves of the agents given as single drug or combination regimens. Mathematics and statistical processing of dose response curves, proportion of drugs dosage to be used in the combination, calculus of theoretical additive DE20 dose as well as experimentally obtained DE20 are provided. It is also presented details of statistical comparison between theoretical and experimentally obtained DE20.

5.
Life Sci ; 182: 122-128, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28629730

ABSTRACT

AIMS: Extensive evidence supports a role for voltage-gated calcium channels (VGCC) and TRPV1 receptors in pain transmission and modulation. We investigated the profile of analgesic interaction between Phα1ß toxin (a VGCC blocker) and SB366791 (selective TRPV1 antagonist) in a model of acute pain induced by capsaicin. Changes in body temperature induced by combination regimens were also evaluated. MAIN METHODS: Isobolographic approach with a fixed dose-ratio of combined drugs was used to determine whether antinociceptive interaction of Phα1ß and SB366791 are subadditive, additive or synergic. Body temperature was obtained by thermal infrared imaging. KEY FINDINGS: Phα1ß and SB366791 interact in a synergistic manner to cause antinociception. We found an interaction index (α) of 0.07 for Phα1ß and SB366791 when these drugs were injected together intraplantarly, which indicates that in vivo interaction between these drugs is greater than additive interaction. Synergism also occurred when intraplantar SB366791 was administered simultaneously with intrathecal Phα1ß (interaction index α=0.06) suggesting a 15 fold rise in potency on the analgesic effect of these drugs when they are added together. It was observed no significant alterations in body temperature of animals treated with this combination regimen. SIGNIFICANCE: Our data reveal that Phα1ß toxin potentiates in 15 fold the antinociceptive action of the TRPV1 blocker SB366791. Therefore, lower doses of these drugs are required to achieve antinociceptive effects when these agents are given in combination.


Subject(s)
Acute Pain/drug therapy , Analgesics/pharmacology , Anilides/pharmacology , Cinnamates/pharmacology , Spider Venoms/pharmacology , TRPV Cation Channels/antagonists & inhibitors , Analgesics/administration & dosage , Anilides/administration & dosage , Animals , Body Temperature , Calcium Channel Blockers/administration & dosage , Calcium Channel Blockers/pharmacology , Capsaicin , Cinnamates/administration & dosage , Disease Models, Animal , Dose-Response Relationship, Drug , Drug Synergism , Mice , Spider Venoms/administration & dosage
6.
Br J Pharmacol ; 174(1): 57-69, 2017 01.
Article in English | MEDLINE | ID: mdl-27759880

ABSTRACT

BACKGROUND AND PURPOSE: Peptides from venomous animals have long been important for understanding pain mechanisms and for the discovery of pain treatments. Here, we hypothesized that Phα1ß, a peptide from the venom of the armed spider Phoneutria nigriventer, produces analgesia by blocking the TRPA1 channel. EXPERIMENTAL APPROACH: Cultured rat dorsal root ganglion (DRG) neurons, human fetal lung fibroblasts (IMR90) or HEK293 cells expressing the human TRPA1 (hTRPA1-HEK293), human TRPV1 (hTRPV1-HEK293) or human TRPV4 channels (hTRPV4-HEK293), were used for calcium imaging and electrophysiology. Nociceptive responses induced by TRPA1, TRPV1 or TRPV4 agonists or by bortezomib were investigated in mice. KEY RESULTS: Phα1ß selectively inhibited calcium responses and currents evoked by the TRPA1 agonist, allyl isothiocyanate (AITC), on hTRPA1-HEK293, IMR90 fibroblasts and DRG neurons. Phα1ß did not affect calcium responses evoked by selective TRPV1 (capsaicin) or TRPV4 (GSK 1016790A) agonists on the various cell types. Intrathecal (i.t.) and intraplantar (i.pl.) administration of low doses of Phα1ß (up to 300 pmol per paw) attenuated acute nociception and mechanical and cold hyperalgesia evoked by AITC (i.t. or i.pl.), without affecting responses produced by capsaicin or hypotonic solution. Notably, Phα1ß abated the TRPA1-dependent neuropathic pain-like responses induced by bortezomib. In vitro and in vivo inhibition of TRPA1 by Phα1ß was reproduced by a recombinant form of the peptide, CTK 01512-2. CONCLUSIONS AND IMPLICATIONS: Phα1ß and CTK 01512-2 selectively target TRPA1, but not other TRP channels. This specific action underlines the potential of Phα1ß and CTK 01512-2 for pain treatment.


Subject(s)
Analgesics/pharmacology , Nerve Tissue Proteins/antagonists & inhibitors , Nociception/drug effects , Spider Venoms/chemistry , Transient Receptor Potential Channels/antagonists & inhibitors , Analgesics/chemistry , Animals , Calcium Channels/metabolism , Cells, Cultured , Dose-Response Relationship, Drug , Fibroblasts/drug effects , Ganglia, Spinal/drug effects , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Nerve Tissue Proteins/metabolism , Neuralgia/drug therapy , Neurons/drug effects , Rats , Spider Venoms/pharmacology , Spiders , Structure-Activity Relationship , TRPA1 Cation Channel , Transient Receptor Potential Channels/metabolism
7.
Pharmacol Biochem Behav ; 114-115: 16-22, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24148893

ABSTRACT

The treatment with the chemotherapeutic agent paclitaxel produces a painful peripheral neuropathy, and is associated with an acute pain syndrome in a clinically significant number of patients. However, no standard therapy has been established to manage the acute pain or the chronic neuropathic pain related to paclitaxel. In the present study, we evaluated the analgesic potential of two N-type voltage-gated calcium channel (VGCC) blockers, ω-conotoxin MVIIA and Phα1ß, on acute and chronic pain induced by paclitaxel. Adult male rats were treated with four intraperitoneal injections of paclitaxel (1+1+1+1mg/kg, in alternate days) and the development of mechanical hyperalgesia was evaluated 24h (acute painful stage) or 15days (chronic painful stage) after the first paclitaxel injection. Not all animals showed mechanical hyperalgesia 24h after the first paclitaxel injection, but those that showed developed a more intense mechanical hyperalgesia at the chronic painful stage. Intrathecal administration (i.t.) of ω-conotoxin MVIIA (3-300pmol/site) or Phα1ß (10-300pmol/site) reduced the mechanical hyperalgesia either at the acute or at the chronic painful stage induced by paclitaxel. When administered at the acute painful stage, ω-conotoxin MVIIA (300pmol/site, i.t.) and Phα1ß (300pmol/site, i.t.) prevented the worsening of chronic mechanical hyperalgesia. Furthermore, Phα1ß (30-300pmol/site, i.t.) elicited less adverse effects than ω-conotoxin MVIIA (10-300 pmol/site, i.t.). Taken together, our data evidence the involvement of N-type VGCC in pain sensitization induced by paclitaxel and point out the potential of Phα1ß as a safer alternative than ω-conotoxin MVIIA to treat the pain related to paclitaxel.


Subject(s)
Analgesics/therapeutic use , Paclitaxel/adverse effects , Pain/drug therapy , Spider Venoms/therapeutic use , omega-Conotoxins/therapeutic use , Acute Disease , Analgesics/pharmacology , Animals , Behavior, Animal/drug effects , Chronic Disease , Male , Rats , Rats, Wistar , Spider Venoms/pharmacology , omega-Conotoxins/pharmacology
8.
Neuropharmacology ; 71: 237-46, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23597507

ABSTRACT

Phα1ß toxin is a peptide purified from the venom of the armed spider Phoneutria nigriventer, with markedly antinociceptive action in models of acute and persistent pain in rats. Similarly to ziconotide, its analgesic action is related to inhibition of high voltage activated calcium channels with more selectivity for N-type. In this study we evaluated the effect of Phα1ß when injected peripherally or intrathecally in a rat model of spontaneous pain induced by capsaicin. We also investigated the effect of Phα1ß on Ca²âº transients in cultured dorsal root ganglia (DRG) neurons and HEK293 cells expressing the TRPV1 receptor. Intraplantar or intrathecal administered Phα1ß reduced both nocifensive behavior and mechanical hypersensitivity induced by capsaicin similarly to that observed with SB366791, a specific TRPV1 antagonist. Peripheral nifedipine and mibefradil did also decrease nociceptive behavior induced by intraplantar capsaicin. In contrast, ω-conotoxin MVIIA (a selective N-type Ca²âº channel blocker) was effective only when administered intrathecally. Phα1ß, MVIIA and SB366791 inhibited, with similar potency, the capsaicin-induced Ca²âº transients in DRG neurons. The simultaneous administration of Phα1ß and SB366791 inhibited the capsaicin-induced Ca²âº transients that were additive suggesting that they act through different targets. Moreover, Phα1ß did not inhibit capsaicin-activated currents in patch-clamp recordings of HEK293 cells that expressed TRPV1 receptors. Our results show that Phα1ß may be effective as a therapeutic strategy for pain and this effect is not related to the inhibition of TRPV1 receptors.


Subject(s)
Analgesics, Non-Narcotic/therapeutic use , Disease Models, Animal , Ganglia, Spinal/drug effects , Membrane Transport Modulators/therapeutic use , Neuralgia/drug therapy , Neurons/drug effects , Spider Venoms/therapeutic use , Analgesics, Non-Narcotic/pharmacology , Animals , Behavior, Animal/drug effects , Calcium Signaling/drug effects , Capsaicin , Cells, Cultured , Ganglia, Spinal/cytology , Ganglia, Spinal/metabolism , Ganglia, Spinal/pathology , HEK293 Cells , Humans , Insect Proteins/pharmacology , Insect Proteins/therapeutic use , Male , Membrane Transport Modulators/pharmacology , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Neuralgia/metabolism , Neuralgia/pathology , Neurons/cytology , Neurons/metabolism , Neurons/pathology , Peptides/pharmacology , Peptides/therapeutic use , Rats , Rats, Wistar , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Spider Venoms/pharmacology , TRPV Cation Channels/antagonists & inhibitors , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...