Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Nanoscale ; 15(47): 19128-19138, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-37964732

ABSTRACT

We report a study of the electron transport (ET) properties at the nanoscale (conductive-AFM denoted as C-AFM hereafter) of individual Prussian Blue Analog (PBA) cubic nanocrystals (NCs) of CsCoIIIFeII, with a size between 15 and 50 nm deposited on HOPG. We demonstrate that these PBA NCs feature an almost size-independent electron injection barrier of 0.41 ± 0.02 eV and 0.27 ± 0.03 eV at the CsCoIIIFeII/HOPG and CsCoIIIFeII/C-AFM tip, respectively, and an intrinsic electron conductivity evolving from a large dispersion between ∼5 × 10-4 and 2 × 10-2 S cm-1 without a clear correlation with the nanocrystal size. The conductivity values measured on individual nanocrystals are up to fifty times higher than those reported on PBA films.

2.
Small ; 19(37): e2301299, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37154245

ABSTRACT

This paper describes a simple, two-steps chemical pathway to obtain bimetallic carbide nanoparticles (NPs) of general formula MxM″yC, also called η-carbides. This process allows for a control of the chemical composition of metals present in the carbides (M = Co and M″ = Mo or W). The first step involves the synthesis of a precursor consisting of a network of octacyanometalates. The second step consists in a thermal degradation of the previously obtained octacyanometalates networks under neutral atmosphere (Ar or N2 ). It is shown that this process results in the formation of carbide NPs with diameter of ≈ 5nm, and the stoichiometries Co3 M'3 C, Co6 M'6 C, Co2 M'4 C for the CsCoM' systems.

3.
Inorg Chem ; 60(21): 16388-16396, 2021 Nov 01.
Article in English | MEDLINE | ID: mdl-34624189

ABSTRACT

Prussian blue analogue nanocrystals of the CsINiII[CrIII(CN)6] cubic network with 6 nm size were assembled as a single monolayer on highly organized pyrolytic graphite (HOPG). X-ray magnetic circular dichroism (XMCD) studies, at the Ni and Cr L2,3 edges, reveal the presence of an easy plane of magnetization evidenced by an opening of the magnetic hysteresis loop (coercive field of ≈200 Oe) when the magnetic field, B, is at 60° relative to the normal to the substrate. The angular dependence of the X-ray natural linear dichroism (XNLD) reveals both an orientation of the nanocrystals on the substrate and an anisotropy of the electronic cloud of the NiII and CrIII coordination sphere species belonging to the nanocrystals' surface. Ligand field multiplet (LFM) calculations that reproduce the experimental data are consistent with an elongated tetragonal distortion of surface NiII coordination sphere responsible for the magnetic behavior of monolayer.

4.
Nat Chem ; 13(1): 10-14, 2021 01.
Article in English | MEDLINE | ID: mdl-33288895

ABSTRACT

Photoinduced charge-transfer is an important process in nature and technology and is responsible for the emergence of exotic functionalities, such as magnetic order for cyanide-bridged bimetallic coordination networks. Despite its broad interest and intensive developments in chemistry and material sciences, the atomic-scale description of the initial photoinduced process, which couples intermetallic charge-transfer and spin transition, has been debated for decades; it has been beyond reach due to its extreme speed. Here we study this process in a prototype cyanide-bridged CoFe system by femtosecond X-ray and optical absorption spectroscopies, enabling the disentanglement of ultrafast electronic and structural dynamics. Our results demonstrate that it is the spin transition that occurs first on the Co site within ~50 fs, and it is this that drives the subsequent Fe-to-Co charge-transfer within ~200 fs. This study represents a step towards understanding and controlling charge-transfer-based functions using light.

5.
Inorg Chem ; 59(18): 13153-13161, 2020 Sep 21.
Article in English | MEDLINE | ID: mdl-32857507

ABSTRACT

Photoswitchable 11 nm nanocrystals with the coordination network Cs{Co[Fe(CN)6]} were obtained using a template-free method. The nanocrystals were recovered from the colloidal solutions as solid materials surrounded by cetyltrimethylammonium (CTA) cations or embedded in the organic polymer polyvinylpyrrolidone (PVP). Complementary magnetic, spectroscopic, and structural techniques, including EPR spectroscopy, reveal a majority (∼70%) of the low-spin and photoactive diamagnetic CoIIIFeII pairs located in the core of the nanocrystals and a mixture of CoIIFeII and CoIIFeIII species present mainly within the shell of the objects. While bulk compounds with similar vacancy concentration do not exhibit noticeable photoinduced charge transfer, the observed photoactivity of the nanocrystals is ascribed to their nanometric size. The relaxation temperature of the photoinduced state shifts upward by ∼55 K when PVP is replaced by CTA. This is ascribed to the larger rigidity of the dense CsCoFe_CTA material, whose metastable state is lower than that for CsCoFe_PVP, leading to a larger relaxation energy barrier and, therefore, to a higher relaxation temperature.

6.
Chem Commun (Camb) ; 55(98): 14844-14847, 2019 Dec 05.
Article in English | MEDLINE | ID: mdl-31768507

ABSTRACT

Ultrasmall sub-10 nm nanoparticles of Prussian blue analogues incorporating GdIII ions at their periphery revealed longitudinal relaxivities above 40 mM-1 s-1 per GdIII regardless of the nature of the core and the polymer coating. Large T1-weighted contrast enhancements were achieved in addition to a highly efficient photothermal effect and in vivo photoacoustic imaging in tumors.


Subject(s)
Ferrocyanides/chemistry , Magnetic Resonance Imaging/methods , Nanoparticles/chemistry , Theranostic Nanomedicine , Animals , Cell Line, Tumor , Contrast Media/chemistry , Gadolinium/chemistry , Humans , Mice , Neoplasms/diagnostic imaging , Transplantation, Heterologous
7.
Nanoscale ; 11(9): 4091-4100, 2019 Feb 28.
Article in English | MEDLINE | ID: mdl-30785462

ABSTRACT

Recent advances in structural control during the synthesis of SWCNTs have in common the use of bimetallic nanoparticles as catalysts, despite the fact that their exact role is not fully understood. We therefore analyze the effect of the catalyst's chemical composition on the structure of the resulting SWCNTs by comparing three bimetallic catalysts (FeRu, CoRu and NiRu). A specific synthesis protocol is designed to impede the catalyst nanoparticle coalescence mechanisms and stabilize their diameter distributions throughout the growth. Owing to the ruthenium component which has a limited carbon solubility, tubes grow in tangential mode and their diameter is close to that of their seeding nanoparticles. By using the as-synthesized SWCNTs as a channel material infield effect transistors, we show how the chemical composition of the catalysts and temperature can be used as parameters to tune the diameter distribution and semiconducting-to-metallic ratio of SWCNT samples. Finally, a phenomenological model, based on the dependence of the carbon solubility as a function of catalyst nanoparticle size and nature of the alloying elements, is proposed to interpret the results.

8.
Chem Commun (Camb) ; 50(51): 6740-3, 2014 Jun 28.
Article in English | MEDLINE | ID: mdl-24829060

ABSTRACT

Large longitudinal relaxivities were observed in Mn(II)-containing Prussian blue analogue nanoparticles. At low concentrations and high field (7 T), a remarkable positive contrast enhancement was seen which exceeded that of clinical contrast agents and was attributed to the very large proportion of surface atoms of these coordination nanoparticles.


Subject(s)
Antineoplastic Agents/chemistry , Contrast Media/chemical synthesis , Magnetic Resonance Imaging/methods , Manganese Compounds/chemistry , Nanoparticles/chemistry , Antineoplastic Agents/pharmacology , Drug Screening Assays, Antitumor , Ferrocyanides/chemistry , HEK293 Cells , Humans , Manganese Compounds/pharmacology , Quantum Dots
9.
Inorg Chem ; 52(18): 10264-74, 2013 Sep 16.
Article in English | MEDLINE | ID: mdl-23987215

ABSTRACT

Based on nickel hexacyanidochromate and cobalt hexacyanidoferrate Prussian blue analogues, two series of photomagnetic/ferromagnetic sub-50 nm core multishell coordination nanoparticles have been synthesized in a surfactant-free one-pot multistep procedure with good control over the dispersity (10% standard deviation) and good agreement with the targeted size at each step. The composition and the valence state of each shell have been probed by different techniques that have revealed the predominance of Co(II)-NC-Fe(III) pairs in a series synthesized without alkali while Co(III)-NC-Fe(II) photoswitchable pairs have been successfully obtained in the photoactive coordination nanoparticles by control of Cs(+) insertion. When compared, the photoinduced behavior of the latter compound is in good agreement with that of the model one. Exchange coupling favors a uniform reversal of the magnetization of the heterostructured nanoparticles, with a large magnetization brought by a soft ferromagnetic shell and a large coercivity due to a harder photomagnetic shell. Moreover, a persistent increase of the photoinduced magnetization is observed for the first time up to the ordering temperature (60 K) of the ferromagnetic component because of a unique synergy.

10.
Chemistry ; 19(21): 6685-94, 2013 May 17.
Article in English | MEDLINE | ID: mdl-23520017

ABSTRACT

The local symmetry and local magnetic properties of 6 nm-sized, bimetallic, cyanide-bridged CsNiCr(CN)6 coordination nanoparticles 1 and 8 nm-sized, trimetallic, CsNiCr(CN)6@CsCoCr(CN)6 core-shell nanoparticles 2 were studied by X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD). The measurements were performed at the Ni(II), Co(II), and Cr(III) L2,3 edges. This study revealed the presence of distorted Ni(II) sites located on the particle surface of 1 that account for the uniaxial magnetic anisotropy observed by SQUID measurements. For the core-shell particles, a combination of the exchange anisotropy between the core and the shell and the pronounced anisotropy of the Co(II) ions is the origin of the large increase in coercive field from 120 to 890 Oe on going from 1 to 2. In addition, XMCD allows the relative orientation of the magnetic moments throughout the core-shell particles to be determined. While for the bimetallic particles of 1, alignment of the magnetic moments of Cr(III) ions with those of Ni(II) ions leads to uniform magnetization, in the core-shell particles 2 the magnetic moments of the isotropic Cr(III) follow those of Co(II) ions in the shell and those of Ni(II) ions in the core, and this leads to nonuniform magnetization in the whole nanoobject, mainly due to the large difference in local anisotropy between the Co(II) ions belonging to the surface and the Ni(II) ions in the core.

11.
Chem Commun (Camb) ; 48(93): 11455-7, 2012 Dec 04.
Article in English | MEDLINE | ID: mdl-23090060

ABSTRACT

Core-shell magnetic coordination nanoparticles made of a soft core and a hard magnetic shell, containing anisotropic Co(II) ions, display a dramatic increase in their average blocking temperature with a coercive field value 25 times larger than that of the soft core, due to a large enhancement of the magnetic anisotropy.

12.
Langmuir ; 28(9): 4525-33, 2012 Mar 06.
Article in English | MEDLINE | ID: mdl-22316131

ABSTRACT

We report a novel method to prepare patterns of nanoparticles over large areas of the substrate. This method is based on the adsorption of the negatively charged nanoparticles dispersed in an aqueous subphase onto a monolayer of the phospholipid dipalmitoyl-l-α-phosphatidylcholine (DPPC) at the air-water interface. It has been used to prepare patterns of nanoparticles of Prussian blue analogues (PBA) of different size (K(0.25)Ni[Fe(CN)(6)](0.75) (NiFe), K(0.25)Ni[Cr(CN)(6)](0.75) (NiCr), K(0.25)Ni[Co(CN)(6)](0.75) (NiCo), Cs(0.4)Co[Cr(CN)(6)](0.8) (CsCoCr), and Cs(0.4)Co[Fe(CN)(6)](0.9) (CsCoFe)). The behavior of DPPC monolayer at the air-water interface in the presence of the subphase of PBA nanoparticles has been studied by the compression isotherms and Brewster angle microscopy (BAM) images. Atomic force microscopy (AFM) of the transferred films on mica substrates shows that patterns of the nanoparticles are observed for a 10(-4) M concentration of the subphase, based on the nanoparticle precursors, at surface pressures between 1 and 6 mN/m and transfer velocities from 10 to 80 mm/min. Vertical, horizontal, or tilted fringes of the nanoparticles with respect to the transfer direction can be obtained depending on the transfer velocity and surface pressure.

13.
J Am Chem Soc ; 134(1): 222-8, 2012 Jan 11.
Article in English | MEDLINE | ID: mdl-22091848

ABSTRACT

Through an extensive set of SQUID magnetic measurements, X-ray absorption spectroscopy, and X-ray magnetic circular dichroism, we have determined the nature of the metastable photomagnetic phase in the cyano-bridged 3D network Cs(2)Cu(7)[Mo(CN)(8)](4). The photomagnetic effect is induced by the photoconversion of Mo(IV) ions in low spin (LS) configuration (S = 0) into Mo(IV) ions in high spin (HS) configuration (S = 1). The magnetic and spectroscopic measurements fully support the LS to HS conversion, whereas the previously invoked charge transfer mechanism Mo(IV) + Cu(II) ⇒ Mo(V) + Cu(I) can be completely ruled out.

14.
Chem Commun (Camb) ; 47(41): 11501-3, 2011 Nov 07.
Article in English | MEDLINE | ID: mdl-21935546

ABSTRACT

Anisotropic nanoparticles of the Fe(pyrazine)Pt(CN)(4) network were prepared embedded in various matrices that revealed to have a dramatic effect on the cooperative spin crossover phenomena. By a judicious choice of the nature of the matrix and the control of interparticle distances, a hysteresis of 15 K was achieved close to room temperature for such nano-objects.

15.
Chem Commun (Camb) ; 47(7): 1985-7, 2011 Feb 21.
Article in English | MEDLINE | ID: mdl-21243126

ABSTRACT

Anisotropic coordination nanoparticles of the photomagnetic network Cs(I)(2)Cu(II)(7)[Mo(IV)(CN)(8)](4) are obtained through a surfactant-free high-yield synthetic procedure in water. These particles are organised as Langmuir-Blodgett films with a preferential orientation of the nano-objects within the film that exhibit a magnetic bistability below 20 K with a very large coercivity due to an efficient photo-transformation.

16.
Chem Commun (Camb) ; 47(3): 1051-3, 2011 Jan 21.
Article in English | MEDLINE | ID: mdl-21076751

ABSTRACT

Negatively charged nanocrystals of the magnetic coordination network CsNiCr(CN)(6) were prepared in water through a seed-mediated growth with a few atomic layers accuracy and final sizes tailored from 6 to 30 nm. A lower limit of the magnetic single-domain critical size was determined to be around 15 nm possessing a blocking temperature above 20 K.


Subject(s)
Ferric Compounds/chemistry , Nanoparticles/chemistry , Cesium/chemistry , Chromium/chemistry , Cyanides/chemistry , Magnetics , Nanoparticles/ultrastructure , Nanotechnology/methods , Nickel/chemistry , Particle Size
17.
Inorg Chem ; 48(8): 3360-70, 2009 Apr 20.
Article in English | MEDLINE | ID: mdl-19361238

ABSTRACT

Designing new objects in the perspective of creating useful functionalities at the nanoscale has been the subject of intense research efforts during the last 20 years. Coordination nanoparticles (CNPs) emerged less than 10 years ago, opening new possibilities for the design of bistable molecule-based objects where magnetism may be controlled or tuned by an external perturbation (light irradiation, temperature change, magnetic field, etc.). Magnetic cyanide-bridged networks have been shown to possess the potential to be shaped as nanoparticles, leading to new functionalities. Light- and temperature-induced bistable nanoparticles were thus discovered. Luminescent CNPs were also prepared, demonstrating the large potential of these objects.


Subject(s)
Nanoparticles/chemistry , Magnetics , Particle Size , Surface Properties , Temperature
19.
Small ; 4(12): 2240-6, 2008 Dec.
Article in English | MEDLINE | ID: mdl-19016497

ABSTRACT

Prussian blue CsNiCr nanoparticles are used to decorate selected portions of a Si substrate. For successful grafting to take place, the Si surface needs first to be chemically functionalized. Low-dose focused ion beam patterning on uniformly functionalized surfaces selects those portions that will not participate in the grafting process. Step-by-step control is assured by atomic force and high-resolution scanning electron microscopy, revealing a submonolayer distribution of the grafted nanoparticles. By novel scanning Hall-probe microscopy, an in-depth investigation of the magnetic response of the nanoparticles to varying temperature and applied magnetic field is provided. The magnetic images acquired suggest that low-temperature canted ferromagnetism is found in the grafted nanoparticles, similar to what is observed in the equivalent bulk material.


Subject(s)
Cyanides/chemistry , Nanoparticles/chemistry , Silicon/chemistry , Magnetics , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Surface Properties
20.
Inorg Chem ; 47(15): 6584-6, 2008 Aug 04.
Article in English | MEDLINE | ID: mdl-18590329

ABSTRACT

Spin-crossover coordination nanoparticles of the cyanide-bridged three-dimensional network Fe(pyrazine){Pt(CN) 4} were prepared at three different sizes using a microemulsion. The 14 nm particles present a transition centered around 265 K with a hysteresis of 6 K.

SELECTION OF CITATIONS
SEARCH DETAIL
...