Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
J Proteomics ; 290: 105023, 2024 01 06.
Article in English | MEDLINE | ID: mdl-37838095

ABSTRACT

The aim was to compare the UF proteomics of pregnant and non-pregnant buffalo during early pregnancy. Forty-four females were submitted to hormonal estrus synchronization and randomly divided into two groups: pregnant (n = 30) and non-pregnant (n = 14). The pregnant group was artificially inseminated and divided into a further two groups: P12 (n = 15) and P18 (n = 15). Conceptus and uterine fluid samples were collected during slaughter at, respectively, 12 and 18 days after insemination. Of all the inseminated females, only eight animals in each group were pregnant, which reduced the sample of the groups to P12 (n = 8) and P18 (n = 8). The non-pregnant group was also re-divided into two groups at the end of synchronization: NP12 (n = 7) and NP18 (n = 7). The UF samples were processed for proteomic analysis. The results were submitted to multivariate and univariate analysis. A total of 1068 proteins were found in the uterine fluid in both groups. Our results describe proteins involved in the conceptus elongation and maternal recognition of pregnancy, and their action was associated with cell growth, endometrial remodeling, and modulation of immune and antioxidant protection, mechanisms necessary for embryonic maintenance in the uterine environment. SIGNIFICANCE: Uterine fluid is a substance synthesized and secreted by the endometrium that plays essential roles during pregnancy in ruminants, contributing significantly to embryonic development. Understanding the functions that the proteins present in the UF perform during early pregnancy, a period marked by embryonic implantation, and maternal recognition of pregnancy is of fundamental importance to understanding the mechanisms necessary for the maintenance of pregnancy. The present study characterized and compared the UF proteome at the beginning of pregnancy in pregnant and non-pregnant buffaloes to correlate the functions of the proteins and the stage of development of the conceptus and unravel their processes in maternal recognition of pregnancy. The proteins found were involved in cell growth and endometrial remodeling, in addition to acting in the immunological protection of the conceptus and performing antioxidant actions necessary for establishing a pregnancy.


Subject(s)
Buffaloes , Proteomics , Animals , Female , Pregnancy , Antioxidants/metabolism , Buffaloes/metabolism , Endometrium/metabolism , Secretome , Uterus/metabolism
2.
Int J Mol Sci ; 24(6)2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36982719

ABSTRACT

Ethanol (EtOH) alters many cellular processes in yeast. An integrated view of different EtOH-tolerant phenotypes and their long noncoding RNAs (lncRNAs) is not yet available. Here, large-scale data integration showed the core EtOH-responsive pathways, lncRNAs, and triggers of higher (HT) and lower (LT) EtOH-tolerant phenotypes. LncRNAs act in a strain-specific manner in the EtOH stress response. Network and omics analyses revealed that cells prepare for stress relief by favoring activation of life-essential systems. Therefore, longevity, peroxisomal, energy, lipid, and RNA/protein metabolisms are the core processes that drive EtOH tolerance. By integrating omics, network analysis, and several other experiments, we showed how the HT and LT phenotypes may arise: (1) the divergence occurs after cell signaling reaches the longevity and peroxisomal pathways, with CTA1 and ROS playing key roles; (2) signals reaching essential ribosomal and RNA pathways via SUI2 enhance the divergence; (3) specific lipid metabolism pathways also act on phenotype-specific profiles; (4) HTs take greater advantage of degradation and membraneless structures to cope with EtOH stress; and (5) our EtOH stress-buffering model suggests that diauxic shift drives EtOH buffering through an energy burst, mainly in HTs. Finally, critical genes, pathways, and the first models including lncRNAs to describe nuances of EtOH tolerance are reported here.


Subject(s)
RNA, Long Noncoding , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , RNA, Long Noncoding/genetics , Ethanol/pharmacology , Ethanol/metabolism
3.
Pestic Biochem Physiol ; 191: 105369, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36963938

ABSTRACT

One of the most concerning pests that attack strawberries in Brazil is Duponchelia fovealis (Zeller), a non-native moth with no registered control methods to date. Our group recently observed that a fungal consortium formed by two strains of Beauveria bassiana (Balsamo) increased the mortality of D. fovealis more than inoculation with each strain on its own. However, the molecular interaction between the fungal consortium and the caterpillars is unknown. Thus, in this work, we sought to pioneer the evaluation of the molecular interaction between a fungal consortium of B. bassiana and D. fovealis caterpillars. We aimed to understand the biocontrol process involved in this interaction and the defense system of the caterpillar. Seven days after D. fovealis were inoculated with the consortium, the dead and surviving caterpillars were analyzed using GC-MS and LC-MS. Some of the metabolites identified in dead caterpillars have primarily antioxidant action. Other metabolites may have insecticidal potential, such as diltiazem-like and tamsulosin-like compounds, as well as 2,5-dimethoxymandelic acid. In surviving caterpillars, the main mechanisms are pro-inflammatory from 2-Palmitoylglycerol metabolite and the antifungal action of the metabolite Aegle marmelos Alkaloid-C. The metabolites identified in dead caterpillars may explain the increased mortality caused by the consortium due to its antioxidant mechanism, which can suppress the caterpillars' immune system, and insecticide action. In surviving caterpillars, the main resistance mechanisms may involve the stimulus to the immunity and antifungal action.


Subject(s)
Beauveria , Insecticides , Moths , Animals , Antifungal Agents , Antioxidants , Insecta , Insecticides/pharmacology , Pest Control, Biological/methods
4.
Front Bioeng Biotechnol ; 11: 1120179, 2023.
Article in English | MEDLINE | ID: mdl-36815878

ABSTRACT

Introduction: Cell membrane-covered biomimetic nanosystems have allowed the development of homologous nanostructures to bestow nanoparticles with enhanced biointerfacing capabilities. The stability of these structures, however, still represents a challenge for the scientific community. This study is aimed at developing and optimizing cell derived membrane-coated nanostructures upon applying design of experiments (DoE) to improve the therapeutic index by homotypic targeting in cancer cells. Methods: Important physicochemical features of the extracted cell membrane from tumoral cells were assessed by mass spectrometry-based proteomics. PLGA-based nanoparticles encapsulating temozolomide (TMZ NPs) were successfully developed. The coating technology applying the isolated U251 cell membrane (MB) was optimized using a fractional two-level three-factor factorial design. All the formulation runs were systematically characterized regarding their diameter, polydispersity index (PDI), and zeta potential (ZP). Experimental conditions generated by DoE were also subjected to morphological studies using negative-staining transmission electron microscopy (TEM). Its short-time stability was also assessed. MicroRaman and Fourier-Transform Infrared (FTIR) spectroscopies and Confocal microscopy were used as characterization techniques for evaluating the NP-MB nanostructures. Internalization studies were carried out to evaluate the homotypic targeting ability. Results and Discussion: The results have shown that nearly 80% of plasma membrane proteins were retained in the cell membrane vesicles after the isolation process, including key proteins to the homotypic binding. DoE analysis considering acquired TEM images reveals that condition run five should be the best-optimized procedure to produce the biomimetic cell-derived membrane-coated nanostructure (NP-MB). Storage stability for at least two weeks of the biomimetic system is expected once the original characteristics of diameter, PDI, and ZP, were maintained. Raman, FTIR, and confocal characterization results have shown the successful encapsulation of TMZ drug and provided evidence of the effective coating applying the MB. Cell internalization studies corroborate the proteomic data indicating that the optimized NP-MB achieved specific targeting of homotypic tumor cells. The structure should retain the complex biological functions of U251 natural cell membranes while exhibiting physicochemical properties suitable for effective homotypic recognition. Conclusion: Together, these findings provide coverage and a deeper understanding regarding the dynamics around extracted cell membrane and polymeric nanostructures interactions and an in-depth insight into the cell membrane coating technology and the development of optimized biomimetic and bioinspired nanostructured systems.

5.
Int J Mol Sci ; 23(20)2022 Oct 21.
Article in English | MEDLINE | ID: mdl-36293503

ABSTRACT

Hypoxia, a condition of low oxygenation frequently found in triple-negative breast tumors (TNBC), promotes extracellular vesicle (EV) secretion and favors cell invasion, a complex process in which cell morphology is altered, dynamic focal adhesion spots are created, and ECM is remodeled. Here, we investigated the invasive properties triggered by TNBC-derived hypoxic small EV (SEVh) in vitro in cells cultured under hypoxic (1% O2) and normoxic (20% O2) conditions, using phenotypical and proteomic approaches. SEVh characterization demonstrated increased protein abundance and diversity over normoxic SEV (SEVn), with enrichment in pro-invasive pathways. In normoxic cells, SEVh promotes invasive behavior through pro-migratory morphology, invadopodia development, ECM degradation, and matrix metalloprotease (MMP) secretion. The proteome profiling of 20% O2-cultured cells exposed to SEVh determined enrichment in metabolic processes and cell cycles, modulating cell health to escape apoptotic pathways. In hypoxia, SEVh was responsible for proteolytic and catabolic pathway inducement, interfering with integrin availability and gelatinase expression. Overall, our results demonstrate the importance of hypoxic signaling via SEV in tumors for the early establishment of metastasis.


Subject(s)
Extracellular Vesicles , Triple Negative Breast Neoplasms , Humans , Triple Negative Breast Neoplasms/pathology , Cell Proliferation , Proteomics , Proteome , Extracellular Vesicles/metabolism , Hypoxia , Integrins , Oxygen , Gelatinases , Metalloproteases , Cell Line, Tumor
6.
PLoS One ; 17(7): e0271460, 2022.
Article in English | MEDLINE | ID: mdl-35834517

ABSTRACT

The use of two or more microorganisms in a microbial consortium has been increasingly applied in the biological control of diseases and pests. Beauveria bassiana is one of the most widely studied fungal species in biological control, yet little is known about its role in fungal consortiums. In a previous study, our group found that a consortium formed by two strains of B. bassiana had significantly greater biocontrol potential against the polyphagous caterpillars Duponchelia fovealis (Lepidoptera: Crambidae) than either strain on its own. In this study, we use GC-MS and LC-MS/MS to evaluate and discuss the metabolomics of the consortium. A total of 21 consortium biomarkers were identified, corresponding to 14 detected by LC-MS/MS and seven by GC-MS. Antioxidant and anti-inflammatory mechanisms are the main properties of the metabolites produced by the consortium. These metabolites can depress the insect's immune system, increasing its vulnerability and, hence, the fungal virulence of the consortium. In light of these results, we propose an action model of insect mortality due to the metabolites secreted by the consortium. The model includes the inhibition of defense mechanisms such as pro-inflammatory interleukin secretion, cell migration, cell aggregation, Dif, Dorsal and Relish gene transcription, and JAK/STAT and JNK signaling pathways. It also promotes the cleaning of oxidative molecules, like ROS, NOS, and H2O2, and the induction of virulence factors.


Subject(s)
Beauveria , Lepidoptera , Animals , Beauveria/physiology , Chromatography, Liquid , Hydrogen Peroxide/metabolism , Lepidoptera/microbiology , Tandem Mass Spectrometry , Virulence
7.
Front Plant Sci ; 12: 716964, 2021.
Article in English | MEDLINE | ID: mdl-34659289

ABSTRACT

Sugarcane is an economically important crop contributing to the sugar and ethanol production of the world with 80 and 40%, respectively. Despite its importance as the main crop for sugar production, the mechanisms involved in the regulation of sucrose accumulation in sugarcane culms are still poorly understood. The aim of this work was to compare the quantitative changes of proteins in juvenile and maturing internodes at three stages of plant development. Label-free shotgun proteomics was used for protein profiling and quantification in internodes 5 (I5) and 9 (I9) of 4-, 7-, and 10-month-old-plants (4M, 7M, and 10M, respectively). The I9/I5 ratio was used to assess the differences in the abundance of common proteins at each stage of internode development. I9 of 4M plants showed statistically significant increases in the abundance of several enzymes of the glycolytic pathway and proteoforms of alcohol dehydrogenase (ADH) and pyruvate decarboxylase (PDC). The changes in content of the enzymes were followed by major increases of proteins related to O2 transport like hemoglobin 2, ROS scavenging enzymes, and enzymes involved in the ascorbate/glutatione system. Besides, intermediates from tricarboxylic acid cycle (TCA) were reduced in I9-4M, indicating that the increase in abundance of several enzymes involved in glycolysis, pentose phosphate cycle, and TCA, might be responsible for higher metabolic flux, reducing its metabolites content. The results observed in I9-4M indicate that hypoxia might be the main cause of the increased flux of glycolysis and ethanolic fermentation to supply ATP and reducing power for plant growth, mitigating the reduction in mitochondrial respiration due to the low oxygen availability inside the culm. As the plant matured and sucrose accumulated to high levels in the culms, the proteins involved in glycolysis, ethanolic fermentation, and primary carbon metabolism were significantly reduced.

8.
Front Plant Sci ; 11: 604849, 2020.
Article in English | MEDLINE | ID: mdl-33488655

ABSTRACT

Eucalyptus rust is caused by the biotrophic fungus, Austropuccinia psidii, which affects commercial plantations of Eucalyptus, a major raw material for the pulp and paper industry in Brazil. In this manuscript we aimed to uncover the molecular mechanisms involved in rust resistance and susceptibility in Eucalyptus grandis. Epifluorescence microscopy was used to follow the fungus development inside the leaves of two contrasting half-sibling genotypes (rust-resistance and rust-susceptible), and also determine the comparative time-course of changes in metabolites and proteins in plants inoculated with rust. Within 24 h of complete fungal invasion, the analysis of 709 metabolomic features showed the suppression of many metabolites 6 h after inoculation (hai) in the rust-resistant genotype, with responses being induced after 12 hai. In contrast, the rust-susceptible genotype displayed more induced metabolites from 0 to 18 hai time-points, but a strong suppression occurred at 24 hai. Multivariate analyses of genotypes and time points were used to select 16 differential metabolites mostly classified as phenylpropanoid-related compounds. Applying the Weighted Gene Co-Expression Network Analysis (WGCNA), rust-resistant and rust-susceptible genotypes had, respectively, 871 and 852 proteins grouped into 5 and 6 modules, of which 5 and 4 of them were significantly correlated to the selected metabolites. Functional analyses revealed roles for photosynthesis and oxidative-dependent responses leading to temporal activity of metabolites and related enzymes after 12 hai in rust-resistance; while the initial over-accumulation of those molecules and suppression of supporting mechanisms at 12 hai caused a lack of progressive metabolite-enzyme responses after 12 hai in rust-susceptible genotype. This study provides some insights on how E. grandis plants are functionally modulated to integrate secondary metabolites and related enzymes from phenylpropanoid pathway and lead to temporal divergences of resistance and susceptibility responses to rust.

9.
Front Plant Sci ; 10: 1524, 2019.
Article in English | MEDLINE | ID: mdl-31850025

ABSTRACT

Uncovering the molecular mechanisms involved in the responses of crops to drought is crucial to understand and enhance drought tolerance mechanisms. Sugarcane (Saccharum spp.) is an important commercial crop cultivated mainly in tropical and subtropical areas for sucrose and ethanol production. Usually, drought tolerance has been investigated by single omics analysis (e.g. global transcripts identification). Here we combine label-free quantitative proteomics and metabolomics data (GC-TOF-MS), using a network-based approach, to understand how two contrasting commercial varieties of sugarcane, CTC15 (tolerant) and SP90-3414 (susceptible), adjust their leaf metabolism in response to drought. To this aim, we propose the utilization of regularized canonical correlation analysis (rCCA), which is a modification of classical CCA, and explores the linear relationships between two datasets of quantitative variables from the same experimental units, with a threshold set to 0.99. Light curves revealed that after 4 days of drought, the susceptible variety had its photosynthetic capacity already significantly reduced, while the tolerant variety did not show major reduction. Upon 12 days of drought, photosynthesis in the susceptible plants was completely reduced, while the tolerant variety was at a third of its rate under control conditions. Network analysis of proteins and metabolites revealed that different biological process had a stronger impact in each variety (e.g. translation in CTC15, generation of precursor metabolites, response to stress and energy in SP90-3414). Our results provide a reference data set and demonstrate that rCCA can be a powerful tool to infer experimentally metabolite-protein or protein-metabolite associations to understand plant biology.

10.
Meat Sci ; 145: 209-219, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29982075

ABSTRACT

The purpose of this research was to investigate the causes and consequences of pHu variations in beef cattle. A group of 176 Nellore beef cattle was evaluated and classified into two different pHu groups: High (≥6.0, N = 17) and Normal (<5.8, N = 159). Plasma concentrations of cortisol and adrenocorticotropic hormone, lactate and glycogen muscular content, meat color, shear force and Longissimus thoracis muscle proteomic profile were evaluated and compared between pHu groups. Muscle glycogen content, meat color and shear force statistically differed between pHu groups. Label-free quantitative proteomic analysis revealed ten differentially abundant proteins between pHu groups, involved in metabolic processes and muscle contraction, which also were significantly correlated with pHu. Thirty-six and 31 proteins were exclusively present in Normal and High pHu group, respectively, which were related to TCA cycle, cortisol production, calcium regulation, and antioxidant function. The MYH7, UGP2, H2AFJ and VDAC3 were identified as potential indicators of pHu variations. CALM and NNT appeared to be interesting proteins to understand the metabolic pathways behind pHu. Data are available via ProteomeXchange with identifier PXD009320.


Subject(s)
Abattoirs , Glycogen/metabolism , Hydrocortisone/blood , Muscle Contraction , Muscle Proteins/metabolism , Muscle, Skeletal/physiology , Red Meat/analysis , Adrenocorticotropic Hormone/blood , Animals , Antioxidants/metabolism , Calcium/metabolism , Cattle , Citric Acid Cycle , Color , Humans , Hydrogen-Ion Concentration , Lactic Acid/blood , Metabolic Networks and Pathways , Muscle, Skeletal/metabolism , Proteomics , Species Specificity , Stress, Mechanical , Stress, Psychological/metabolism
11.
Sci Rep ; 8(1): 2466, 2018 02 06.
Article in English | MEDLINE | ID: mdl-29410456

ABSTRACT

Bacterial symbionts are broadly distributed among insects, influencing their bioecology to different degrees. Aphids carry a number of secondary symbionts that can influence aphid physiology and fitness attributes. Spiroplasma is seldom reported as an aphid symbiont, but a high level of infection has been observed in one population of the tropical aphid Aphis citricidus. We used sister isolines of Spiroplasma-infected (Ac-BS) and Spiroplasma-free (Ac-B) aphids reared on sweet orange (optimum host) and orange jasmine (suboptimum host) to demonstrate the effects of Spiroplasma infection in the aphid proteome profile. A higher number of proteins were differently abundant in aphids feeding on orange jasmine, indicating an impact of host plant quality. In both host plants, the majority of proteins affected by Spiroplasma infection were heat shock proteins, proteins linked to cell function and structure, and energy metabolism. Spiroplasma also induced changes in proteins involved in antimicrobial activity, carbohydrate processing and metabolism, amino acid synthesis and metabolism in aphids feeding on orange jasmine. We discuss on how the aphid host proteome is differentially affected by Spiroplasma infection when the host is exploiting host plants with different nutritional values.


Subject(s)
Aphids/genetics , Citrus sinensis/chemistry , Insect Proteins/genetics , Proteome/genetics , Spiroplasma/physiology , Symbiosis/physiology , Amino Acids/biosynthesis , Animals , Aphids/metabolism , Aphids/microbiology , Carbohydrate Metabolism/genetics , Citrus sinensis/parasitology , Energy Metabolism/genetics , Gene Expression , Gene Expression Profiling , Gene Ontology , Heat-Shock Proteins/genetics , Heat-Shock Proteins/metabolism , Insect Proteins/metabolism , Molecular Sequence Annotation , Proteome/metabolism , Proteomics/methods
12.
Front Plant Sci ; 9: 1978, 2018.
Article in English | MEDLINE | ID: mdl-30687371

ABSTRACT

Austropuccinia psidii, the causal agent of myrtle rust, is a biotrophic pathogen whose growth and development depends on the host tissues. The uredospores of A. psidii infect Eucalyptus by engaging in close contact with the host surface and interacting with the leaf cuticle that provides important chemical and physical signals to trigger the infection process. In this study, the cuticular waxes of Eucalyptus spp. were analyzed to determine their composition or structure and correlation with susceptibility/resistance to A. psidii. Twenty-one Eucalyptus spp. in the field were classified as resistant or susceptible. The resistance/susceptibility level of six Eucalyptus spp. were validated in controlled conditions using qPCR, revealing that the pathogen can germinate on the eucalyptus surface of some species without multiplying in the host. CG-TOF-MS analysis detected 26 compounds in the Eucalyptus spp. cuticle and led to the discovery of the role of hexadecanoic acid in the susceptibility of Eucalyptus grandis and Eucalyptus phaeotricha to A. psidii. We characterized the epicuticular wax morphology of the six previously selected Eucalyptus spp. using scanning electron microscopy and observed different behavior in A. psidii germination during host infection. It was found a correlation of epicuticular morphology on the resistance to A. psidii. However, in this study, we provide the first report of considerable interspecific variation in Eucalyptus spp. on the susceptibility to A. psidii and its correlation with cuticular waxes chemical compounds that seem to play a synergistic role as a preformed defense mechanism.

13.
Metabolomics ; 14(4): 51, 2018 03 16.
Article in English | MEDLINE | ID: mdl-30830356

ABSTRACT

INTRODUCTION: During in vitro fertilization (IVF), the hyper response to controlled ovarian stimulation (COS) is a common characteristic among patients diagnosed with polycystic ovary syndrome (PCOS), although non-diagnosed patients may also demonstrate this response. OBJECTIVES: In an effort to investigate follicular metabolic characteristics associated with hyper response to COS, the present study analyzed follicular fluid (FF) samples from patients undergoing IVF. METHODS: FF samples were obtained from patients with PCOS and hyper response during IVF (PCOS group, N = 15), patients without PCOS but with hyper response during IVF (HR group, N = 44), and normo-responder patients receiving IVF (control group, N = 22). FF samples underwent Bligh and Dyer extraction, followed by metabolomic analysis by ultra-performance liquid chromatography mass spectrometry, considering two technical replicates. Clinical data was analyzed by ANOVA and chi-square tests. The metabolomic dataset was analyzed by multivariate statistics, and the significance of biomarkers was confirmed by ANOVA. RESULTS: Clinical data showed differences regarding follicles production, oocyte and embryo quality. From the 15 proposed biomarkers, 14 were of increased abundance in the control group and attributed as fatty acids, diacylglycerol, triacylglycerol, ceramide, ceramide-phosphate, phosphatidylcholine, and sphingomyelin. The PCOS patients showed increased abundance of a metabolite of m/z 144.0023 that was not attributed to a class. CONCLUSION: The clinical and metabolic similarities observed in the FF of hyper responders with and without PCOS diagnosis indicate common biomarkers that could assist on the development of accessory tools for assessment of IVF parameters.


Subject(s)
Fertilization in Vitro , Follicular Fluid/metabolism , Metabolomics , Oocytes/metabolism , Ovulation Induction , Polycystic Ovary Syndrome/metabolism , Adult , Chromatography, High Pressure Liquid , Female , Humans , Mass Spectrometry
14.
Biomark Med ; 10(12): 1225-1229, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27911590

ABSTRACT

AIM: Sepsis is a critical condition that leads to high mortality and is the most common cause of death in intensive care units. Despite exhaustive efforts by the scientific community, a reliable biomarker for diagnosis, evolution and prognosis of sepsis is still lacking. Results & methodology: Here, using high-throughput proteomics, we describe N-acetylmuramoyl-l-alanine amidase as a novel candidate for differentiating infectious and noninfectious inflammatory syndromes. DISCUSSION & CONCLUSION: This is the first description of N-acetylmuramoyl-l-alanine amidase as a biomarker that can be used alone or in conjunction with other biomarkers to facilitate the diagnosis of sepsis in the critically ill.


Subject(s)
Biomarkers/blood , N-Acetylmuramoyl-L-alanine Amidase/blood , Proteomics , Sepsis/diagnosis , C-Reactive Protein/analysis , Case-Control Studies , Chromatography, High Pressure Liquid , Deuterium Exchange Measurement , Humans , Intensive Care Units , Mass Spectrometry , Sepsis/pathology
15.
Future Microbiol ; 11: 1299-1313, 2016 10.
Article in English | MEDLINE | ID: mdl-27662506

ABSTRACT

AIM: This study aims to understand which Candida orthopsilosis protein aids fungus adaptation upon its switching from planktonic growth to biofilm. MATERIALS & METHODS: Ion mobility separation within mass spectrometry analysis combination were used. RESULTS: Proteins mapped for different biosynthetic pathways showed that selective ribosome autophagy might occur in biofilms. Glucose, used as a carbon source in the glycolytic flux, changed to glycogen and trehalose. CONCLUSION: Candida orthopsilosis expresses proteins that combine a variety of mechanisms to provide yeasts with the means to adjust the catalytic properties of enzymes. Adjustment of the enzymes helps modulate the biosynthesis/degradation rates of the available nutrients, in order to control and coordinate the metabolic pathways that enable cells to express an adequate response to nutrient availability.


Subject(s)
Biofilms/growth & development , Candida/metabolism , Candida/physiology , Metabolome/physiology , Plankton/growth & development , Amino Acids/biosynthesis , Amino Acids/genetics , Candida/genetics , Candida/growth & development , Carbon/metabolism , Citric Acid Cycle , Fungal Proteins/biosynthesis , Fungal Proteins/genetics , Fungal Proteins/metabolism , Fungal Proteins/physiology , Gene Expression Regulation, Fungal/genetics , Gene Expression Regulation, Fungal/physiology , Gene Ontology , Glucose/metabolism , Glycogen/metabolism , Glycolysis , Metabolic Flux Analysis , Metabolic Networks and Pathways/genetics , Metabolic Networks and Pathways/physiology , Metabolome/genetics , Multigene Family , Plankton/metabolism , Plankton/physiology , Proteome/genetics , Proteome/metabolism , Proteome/physiology , Trehalose/metabolism
16.
BMC Plant Biol ; 16: 14, 2016 Jan 11.
Article in English | MEDLINE | ID: mdl-26754199

ABSTRACT

BACKGROUND: Sugarcane has been used as the main crop for ethanol production for more than 40 years in Brazil. Recently, the production of bioethanol from bagasse and straw, also called second generation (2G) ethanol, became a reality with the first commercial plants started in the USA and Brazil. However, the industrial processes still need to be improved to generate a low cost fuel. One possibility is the remodeling of cell walls, by means of genetic improvement or transgenesis, in order to make the bagasse more accessible to hydrolytic enzymes. We aimed at characterizing the cell wall proteome of young sugarcane culms, to identify proteins involved in cell wall biogenesis. Proteins were extracted from the cell walls of 2-month-old culms using two protocols, non-destructive by vacuum infiltration vs destructive. The proteins were identified by mass spectrometry and bioinformatics. RESULTS: A predicted signal peptide was found in 84 different proteins, called cell wall proteins (CWPs). As expected, the non-destructive method showed a lower percentage of proteins predicted to be intracellular than the destructive one (33% vs 44%). About 19% of CWPs were identified with both methods, whilst the infiltration protocol could lead to the identification of 75% more CWPs. In both cases, the most populated protein functional classes were those of proteins related to lipid metabolism and oxido-reductases. Curiously, a single glycoside hydrolase (GH) was identified using the non-destructive method whereas 10 GHs were found with the destructive one. Quantitative data analysis allowed the identification of the most abundant proteins. CONCLUSIONS: The results highlighted the importance of using different protocols to extract proteins from cell walls to expand the coverage of the cell wall proteome. Ten GHs were indicated as possible targets for further studies in order to obtain cell walls less recalcitrant to deconstruction. Therefore, this work contributed to two goals: enlarge the coverage of the sugarcane cell wall proteome, and provide target proteins that could be used in future research to facilitate 2G ethanol production.


Subject(s)
Cell Wall/chemistry , Glycoside Hydrolases/metabolism , Peroxidases/metabolism , Plant Proteins/metabolism , Proteome , Saccharum/chemistry , Plant Proteins/chemistry , Plant Stems/chemistry , Saccharum/enzymology
17.
PLoS One ; 10(12): e0144027, 2015.
Article in English | MEDLINE | ID: mdl-26633694

ABSTRACT

The blood serum lipid profile of women with Gestational Diabetes Mellitus (GDM) is still under study. There are no data on the serum lipid profile of GDM patients with more severe (insulin treated) compared to milder forms (diet treated) GDM. The aim of our study was to analyze the blood serum lipid profile of patients with milder versus more severe forms of GDM and to compare these findings with those of healthy pregnant women. This cross-sectional analytical study included 30 insulin-treated GDM, 30 diet-only GDM and 30 healthy pregnant women. Serum lipid was extracted from the 90 participants and their lipid profiles were analyzed by lipid fingerprinting using liquid-chromatography-mass spectrometry. A total of 143 parent ions were differentially represented in each of the three groups, belonging to the following classes: Glycerophospholipids, Sterol Lipids, Sphingolipids, Prenol Lipids, Fatty Acyls and Glycerolipids. There were significant differences in the lipid profiles of healthy pregnant women compared to GDM patients and also between milder versus more severe forms of GDM. There are marked differences in lipid fingerprinting between healthy pregnant women compared to those with GDM in the third trimester. Moreover, the lipid profile of women with more severe forms of GDM differs considerably from that of women with milder forms of GDM. These findings may be useful to help clarify the pathogenesis of milder and more severe forms of GDM.


Subject(s)
Diabetes, Gestational/blood , Lipids/blood , Adult , Case-Control Studies , Chromatography, Liquid , Cross-Sectional Studies , Diabetes, Gestational/pathology , Female , Humans , Pregnancy , Spectrometry, Mass, Electrospray Ionization
18.
J Assist Reprod Genet ; 32(12): 1817-25, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26497128

ABSTRACT

PURPOSE: The aim of the present study was to analyze the lipid profile of follicular fluid from patients with endometriosis and endometrioma who underwent in vitro fertilization treatment (IVF). METHODS: The control group (n = 10) was composed of women with tubal factor or minimal male factor infertility who had positive pregnancy outcomes after IVF. The endometriosis group consisted of women with endometriosis diagnosed by videolaparoscopy (n = 10), and from the same patients, the endometriomas fluids were collected, which composed the endometrioma group (n = 10). From the follicular fluid and endometriomas, lipids were extracted by the Bligh and Dyer method, and the samples were analyzed by tandem mass spectrometry. RESULTS: We observed phosphatidylglycerol phosphate, phosphatidylcholine, phosphatidylserine, and phosphatidylnositol bisphosphate in the control group. In the endometriosis group, sphingolipids and phosphatidylcholines were more abundant, while in the endometrioma group, sphingolipids and phosphatidylcholines with different m/z from the endometriosis group were found in high abundance. CONCLUSION: This analysis demonstrated that there is a differential representation of these lipids according to their respective groups. In addition, the lipids found are involved in important mechanisms related to endometriosis progress in the ovary. Thus, the metabolomic approach for the study of lipids may be helpful in potential biomarker discovery.


Subject(s)
Biomarkers/metabolism , Endometriosis/diagnosis , Follicular Fluid/metabolism , Lipid Metabolism , Lipids/chemistry , Endometriosis/metabolism , Female , Humans , Metabolomics , Spectrometry, Mass, Electrospray Ionization
19.
J Assist Reprod Genet ; 32(1): 45-54, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25374394

ABSTRACT

PURPOSE: Polycystic ovary syndrome (PCOS) is an endocrine-metabolic disorder that leads to lower natural reproductive potential and presents a challenge for assisted reproductive medicine because patients may exhibit immature oocyte retrieval and a higher risk of ovarian hyper stimulation syndrome during in vitro fertilization (IVF) treatment. This study aimed to identify potential lipid biomarkers for women with PCOS and a hyper response to controlled ovarian stimulation. METHODS: Follicular fluid samples were collected from patients who underwent IVF, including normal responder women who became pregnant (control group, n = 11), women with PCOS and a hyper response to gonadotropins (PCOS group, n = 7) and women with only hyper response to gonadotropins (HR group, n = 7). A lipidomic analysis was performed by electrospray ionization mass spectrometry, and candidate biomarkers were analyzed by tandem mass spectrometry experiment. RESULTS: The lipid profiles indicated particularities related to differences in phosphatidylcholine (PCOS and HR), phosphatidylserine, phosphatydilinositol and phosphatidylglycerol (control), sphingolipids (PCOS) and phosphatidylethanolamine (control and HR). CONCLUSIONS: These findings contribute to the understanding of the molecular mechanisms associated with lipid metabolism in the PCOS-related hyper response, and strongly suggest that these lipids may be useful as biomarkers, leading to the development of more individualized treatment for pregnancy outcome.


Subject(s)
Fertilization in Vitro , Follicular Fluid/metabolism , Infertility, Female/metabolism , Polycystic Ovary Syndrome/metabolism , Adult , Female , Gonadotropins/metabolism , Humans , Lipids , Ovulation Induction , Polycystic Ovary Syndrome/pathology , Pregnancy , Pregnancy Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...