Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Front Neurol ; 9: 640, 2018.
Article in English | MEDLINE | ID: mdl-30131759

ABSTRACT

Current approaches have failed to yield success in the translation of neuroprotective therapies from the pre-clinical to the clinical arena for traumatic brain injury (TBI). Numerous explanations have been put forth in both the pre-clinical and clinical arenas. Operation Brain Trauma Therapy (OBTT), a pre-clinical therapy and biomarker screening consortium has, to date, evaluated 10 therapies and assessed three serum biomarkers in nearly 1,500 animals across three rat models and a micro pig model of TBI. OBTT provides a unique platform to exploit heterogeneity of TBI and execute the research needed to identify effective injury specific therapies toward precision medicine. It also represents one of the first multi-center pre-clinical consortia for TBI, and through its work has yielded insight into the challenges and opportunities of this approach. In this review, important concepts related to consortium infrastructure, modeling, therapy selection, dosing and target engagement, outcomes, analytical approaches, reproducibility, and standardization will be discussed, with a focus on strategies to embellish and improve the chances for future success. We also address issues spanning the continuum of care. Linking the findings of optimized pre-clinical consortia to novel clinical trial designs has great potential to help address the barriers in translation and produce successes in both therapy and biomarker development across the field of TBI and beyond.

2.
J Neurotrauma ; 33(6): 606-14, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26671284

ABSTRACT

Operation Brain Trauma Therapy (OBTT) is a fully operational, rigorous, and productive multicenter, pre-clinical drug and circulating biomarker screening consortium for the field of traumatic brain injury (TBI). In this article, we synthesize the findings from the first five therapies tested by OBTT and discuss both the current work that is ongoing and potential future directions. Based on the results generated from the first five therapies tested within the exacting approach used by OBTT, four (nicotinamide, erythropoietin, cyclosporine A, and simvastatin) performed below or well below what was expected based on the published literature. OBTT has identified, however, the early post-TBI administration of levetiracetam as a promising agent and has advanced it to a gyrencephalic large animal model--fluid percussion injury in micropigs. The sixth and seventh therapies have just completed testing (glibenclamide and Kollidon VA 64), and an eighth drug (AER 271) is in testing. Incorporation of circulating brain injury biomarker assessments into these pre-clinical studies suggests considerable potential for diagnostic and theranostic utility of glial fibrillary acidic protein in pre-clinical studies. Given the failures in clinical translation of therapies in TBI, rigorous multicenter, pre-clinical approaches to therapeutic screening such as OBTT may be important for the ultimate translation of therapies to the human condition.


Subject(s)
Brain Injuries, Traumatic/drug therapy , Drug Evaluation, Preclinical/trends , Neuroprotective Agents/therapeutic use , Animals , Disease Models, Animal , Drug Evaluation, Preclinical/methods , Male , Neurology/methods , Neurology/trends , Rats , Rats, Sprague-Dawley
3.
J Neurotrauma ; 33(6): 595-605, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26671651

ABSTRACT

Operation Brain Trauma Therapy (OBTT) is a multicenter pre-clinical drug screening consortium testing promising therapies for traumatic brain injury (TBI) in three well-established models of TBI in rats--namely, parasagittal fluid percussion injury (FPI), controlled cortical impact (CCI), and penetrating ballistic-like brain injury (PBBI). This article presents unique characterization of these models using histological and behavioral outcomes and novel candidate biomarkers from the first three treatment trials of OBTT. Adult rats underwent CCI, FPI, or PBBI and were treated with vehicle (VEH). Shams underwent all manipulations except trauma. The glial marker glial fibrillary acidic protein (GFAP) and the neuronal marker ubiquitin C-terminal hydrolase (UCH-L1) were measured by enzyme-linked immunosorbent assay in blood at 4 and 24 h, and their delta 24-4 h was calculated for each marker. Comparing sham groups across experiments, no differences were found in the same model. Similarly, comparing TBI + VEH groups across experiments, no differences were found in the same model. GFAP was acutely increased in injured rats in each model, with significant differences in levels and temporal patterns mirrored by significant differences in delta 24-4 h GFAP levels and neuropathological and behavioral outcomes. Circulating GFAP levels at 4 and 24 h were powerful predictors of 21 day contusion volume and tissue loss. UCH-L1 showed similar tendencies, albeit with less robust differences between sham and injury groups. Significant differences were also found comparing shams across the models. Our findings (1) demonstrate that TBI models display specific biomarker profiles, functional deficits, and pathological consequence; (2) support the concept that there are different cellular, molecular, and pathophysiological responses to TBI in each model; and (3) advance our understanding of TBI, providing opportunities for a successful translation and holding promise for theranostic applications. Based on our findings, additional studies in pre-clinical models should pursue assessment of GFAP as a surrogate histological and/or theranostic end-point.


Subject(s)
Biomarkers/blood , Brain Injuries, Traumatic/blood , Glial Fibrillary Acidic Protein/blood , Ubiquitin Thiolesterase/blood , Animals , Disease Models, Animal , Enzyme-Linked Immunosorbent Assay , Male , Rats , Rats, Sprague-Dawley
4.
J Clin Microbiol ; 49(12): 4106-11, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21940475

ABSTRACT

Trichomoniasis is a common sexually transmitted disease associated with preterm birth, low birth weight, and increased susceptibility to infection with other pathogenic sexually transmitted microorganisms. Nucleic acid amplification tests for Trichomonas vaginalis have improved sensitivity for detecting infected individuals compared to existing culture-based methods. This prospective, multicenter U.S. clinical trial evaluated the performance of the automated Aptima T. vaginalis assay for detecting T. vaginalis in 1,025 asymptomatic and symptomatic women. Vaginal swab, endocervical swab, ThinPrep PreservCyt, and urine specimens were collected. Subject infection status was determined by wet-mount microscopy and culture. Aptima T. vaginalis assay performance was determined for each specimen type by comparison to subject infection status. Of 933 subjects analyzed, 59.9% were symptomatic. Aptima T. vaginalis clinical sensitivity and specificity were, respectively, 100% and 99.0% for vaginal swabs, 100% and 99.4% for endocervical swabs, 100% and 99.6% in ThinPrep samples, and 95.2% and 98.9% in urine specimens. Aptima T. vaginalis performance levels were similar in asymptomatic and symptomatic subjects. This study validates the clinical performance of the Aptima T. vaginalis assay for screening asymptomatic and symptomatic women for T. vaginalis infection.


Subject(s)
Molecular Diagnostic Techniques/methods , Parasitology/methods , Trichomonas Vaginitis/diagnosis , Trichomonas vaginalis/genetics , Trichomonas vaginalis/isolation & purification , Adolescent , Adult , Aged , Automation/methods , Cervix Uteri/parasitology , Female , Humans , Middle Aged , Prospective Studies , Sensitivity and Specificity , Trichomonas Vaginitis/parasitology , United States , Urine/parasitology , Vagina/parasitology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...