Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Nat Commun ; 11(1): 4932, 2020 10 01.
Article in English | MEDLINE | ID: mdl-33004838

ABSTRACT

Most genes associated with neurodevelopmental disorders (NDDs) were identified with an excess of de novo mutations (DNMs) but the significance in case-control mutation burden analysis is unestablished. Here, we sequence 63 genes in 16,294 NDD cases and an additional 62 genes in 6,211 NDD cases. By combining these with published data, we assess a total of 125 genes in over 16,000 NDD cases and compare the mutation burden to nonpsychiatric controls from ExAC. We identify 48 genes (25 newly reported) showing significant burden of ultra-rare (MAF < 0.01%) gene-disruptive mutations (FDR 5%), six of which reach family-wise error rate (FWER) significance (p < 1.25E-06). Among these 125 targeted genes, we also reevaluate DNM excess in 17,426 NDD trios with 6,499 new autism trios. We identify 90 genes enriched for DNMs (FDR 5%; e.g., GABRG2 and UIMC1); of which, 61 reach FWER significance (p < 3.64E-07; e.g., CASZ1). In addition to doubling the number of patients for many NDD risk genes, we present phenotype-genotype correlations for seven risk genes (CTCF, HNRNPU, KCNQ3, ZBTB18, TCF12, SPEN, and LEO1) based on this large-scale targeted sequencing effort.


Subject(s)
Genetic Predisposition to Disease , Neurodevelopmental Disorders/genetics , Basic Helix-Loop-Helix Transcription Factors/genetics , CCCTC-Binding Factor/genetics , Case-Control Studies , Cohort Studies , DNA Mutational Analysis , DNA-Binding Proteins/genetics , Female , Genetic Association Studies , Heterogeneous-Nuclear Ribonucleoprotein U/genetics , High-Throughput Nucleotide Sequencing , Humans , KCNQ3 Potassium Channel/genetics , Male , Mutation , RNA-Binding Proteins/genetics , Repressor Proteins/genetics , Transcription Factors/genetics
3.
Nat Commun ; 10(1): 4920, 2019 10 29.
Article in English | MEDLINE | ID: mdl-31664034

ABSTRACT

Familial Adult Myoclonic Epilepsy (FAME) is characterised by cortical myoclonic tremor usually from the second decade of life and overt myoclonic or generalised tonic-clonic seizures. Four independent loci have been implicated in FAME on chromosomes (chr) 2, 3, 5 and 8. Using whole genome sequencing and repeat primed PCR, we provide evidence that chr2-linked FAME (FAME2) is caused by an expansion of an ATTTC pentamer within the first intron of STARD7. The ATTTC expansions segregate in 158/158 individuals typically affected by FAME from 22 pedigrees including 16 previously reported families recruited worldwide. RNA sequencing from patient derived fibroblasts shows no accumulation of the AUUUU or AUUUC repeat sequences and STARD7 gene expression is not affected. These data, in combination with other genes bearing similar mutations that have been implicated in FAME, suggest ATTTC expansions may cause this disorder, irrespective of the genomic locus involved.


Subject(s)
Carrier Proteins/genetics , Chromosomes, Human, Pair 2/genetics , DNA Repeat Expansion , Epilepsies, Myoclonic/genetics , Introns , Adolescent , Adult , Child , Child, Preschool , Chromosome Mapping , Female , Humans , Male , Middle Aged , Pedigree , Young Adult
4.
Mol Genet Genomic Med ; 3(3): 203-14, 2015 May.
Article in English | MEDLINE | ID: mdl-26029707

ABSTRACT

The Aristaless-related homeobox (ARX) gene is implicated in intellectual disability with the most frequent pathogenic mutations leading to expansions of the first two polyalanine tracts. Here, we describe analysis of the ARX gene outlining the approaches in the Australian and Portuguese setting, using an integrated clinical and molecular strategy. We report variants in the ARX gene detected in 19 patients belonging to 17 families. Seven pathogenic variants, being expansion mutations in both polyalanine tract 1 and tract 2, were identifyed, including a novel mutation in polyalanine tract 1 that expands the first tract to 20 alanines. This precise number of alanines is sufficient to cause pathogenicity when expanded in polyalanine tract 2. Five cases presented a probably non-pathogenic variant, including the novel HGVS: c.441_455del, classified as unlikely disease causing, consistent with reports that suggest that in frame deletions in polyalanine stretches of ARX rarely cause intellectual disability. In addition, we identified five cases with a variant of unclear pathogenic significance. Owing to the inconsistent ARX variants description, publications were reviewed and ARX variant classifications were standardized and detailed unambiguously according to recommendations of the Human Genome Variation Society. In the absence of a pathognomonic clinical feature, we propose that molecular analysis of the ARX gene should be included in routine diagnostic practice in individuals with either nonsyndromic or syndromic intellectual disability. A definitive diagnosis of ARX-related disorders is crucial for an adequate clinical follow-up and accurate genetic counseling of at-risk family members.

5.
Am J Hum Genet ; 79(6): 1119-24, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17186471

ABSTRACT

In a systematic sequencing screen of the coding exons of the X chromosome in 250 families with X-linked mental retardation (XLMR), we identified two nonsense mutations and one consensus splice-site mutation in the AP1S2 gene on Xp22 in three families. Affected individuals in these families showed mild-to-profound mental retardation. Other features included hypotonia early in life and delay in walking. AP1S2 encodes an adaptin protein that constitutes part of the adaptor protein complex found at the cytoplasmic face of coated vesicles located at the Golgi complex. The complex mediates the recruitment of clathrin to the vesicle membrane. Aberrant endocytic processing through disruption of adaptor protein complexes is likely to result from the AP1S2 mutations identified in the three XLMR-affected families, and such defects may plausibly cause abnormal synaptic development and function. AP1S2 is the first reported XLMR gene that encodes a protein directly involved in the assembly of endocytic vesicles.


Subject(s)
Adaptor Protein Complex sigma Subunits/genetics , Mental Retardation, X-Linked/genetics , Mutation , Adaptor Protein Complex sigma Subunits/metabolism , Adult , Child , Endosomes/metabolism , Female , Humans , Male , Mental Retardation, X-Linked/etiology , Mental Retardation, X-Linked/psychology , Pedigree
SELECTION OF CITATIONS
SEARCH DETAIL
...