Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
- IMPACC group; Al Ozonoff; Joanna Schaenman; Naresh Doni Jayavelu; Carly E. Milliren; Carolyn S. Calfee; Charles B. Cairns; Monica Kraft; Lindsey R. Baden; Albert C. Shaw; Florian Krammer; Harm Van Bakel; Denise Esserman; Shanshan Liu; Ana Fernandez Sesma; Viviana Simon; David A. Hafler; Ruth R. Montgomery; Steven H. Kleinstein; Ofer Levy; Christian Bime; Elias K. Haddad; David J. Erle; Bali Pulendran; Kari C. Nadeau; Mark M. Davis; Catherine L. Hough; William B. Messer; Nelson I. Agudelo Higuita; Jordan P. Metcalf; Mark A. Atkinson; Scott C. Brakenridge; David B. Corry; Farrah Kheradmand; Lauren I. R. Ehrlich; Esther Melamed; Grace A. McComsey; Rafick Sekaly; Joann Diray-Arce; Bjoern Peters; Alison D. Augustine; Elaine F. Reed; Kerry McEnaney; Brenda Barton; Claudia Lentucci; Mehmet Saluvan; Ana C. Chang; Annmarie Hoch; Marisa Albert; Tanzia Shaheen; Alvin Kho; Sanya Thomas; Jing Chen; Maimouna D. Murphy; Mitchell Cooney; Scott Presnell; Leying Guan; Jeremy Gygi; Shrikant Pawar; Anderson Brito; Zain Khalil; James A. Overton; Randi Vita; Kerstin Westendorf; Cole Maguire; Slim Fourati; Ramin Salehi-Rad; Aleksandra Leligdowicz; Michael Matthay; Jonathan Singer; Kirsten N. Kangelaris; Carolyn M. Hendrickson; Matthew F. Krummel; Charles R. Langelier; Prescott G. Woodruff; Debra L. Powell; James N. Kim; Brent Simmons; I.Michael Goonewardene; Cecilia M. Smith; Mark Martens; Jarrod Mosier; Hiroki Kimura; Amy Sherman; Stephen Walsh; Nicolas Issa; Charles Dela Cruz; Shelli Farhadian; Akiko Iwasaki; Albert I. Ko; Evan J. Anderson; Aneesh Mehta; Jonathan E. Sevransky; Sharon Chinthrajah; Neera Ahuja; Angela Rogers; Maja Artandi; Sarah A.R. Siegel; Zhengchun Lu; Douglas A. Drevets; Brent R. Brown; Matthew L. Anderson; Faheem W. Guirgis; Rama V. Thyagarajan; Justin Rousseau; Dennis Wylie; Johanna Busch; Saurin Gandhi; Todd A. Triplett; George Yendewa; Olivia Giddings; Tatyana Vaysman; Bernard Khor; Adeeb Rahman; Daniel Stadlbauer; Jayeeta Dutta; Hui Xie; Seunghee Kim-Schulze; Ana Silvia Gonzalez-Reiche; Adriana van de Guchte; Holden T. Maecker; Keith Farrugia; Zenab Khan; Joanna Schaenman; Elaine F. Reed; Ramin Salehi-Rad; David Elashoff; Jenny Brook; Estefania Ramires-Sanchez; Megan Llamas; Adreanne Rivera; Claudia Perdomo; Dawn C. Ward; Clara E. Magyar; Jennifer Fulcher; Yumiko Abe-Jones; Saurabh Asthana; Alexander Beagle; Sharvari Bhide; Sidney A. Carrillo; Suzanna Chak; Rajani Ghale; Ana Gonzales; Alejandra Jauregui; Norman Jones; Tasha Lea; Deanna Lee; Raphael Lota; Jeff Milush; Viet Nguyen; Logan Pierce; Priya Prasad; Arjun Rao; Bushra Samad; Cole Shaw; Austin Sigman; Pratik Sinha; Alyssa Ward; Andrew - Willmore; Jenny Zhan; Sadeed Rashid; Nicklaus Rodriguez; Kevin Tang; Luz Torres Altamirano; Legna Betancourt; Cindy Curiel; Nicole Sutter; Maria Tercero Paz; Gayelan Tietje-Ulrich; Carolyn Leroux; Jennifer Connors; Mariana Bernui; Michele Kutzler; Carolyn Edwards; Edward Lee; Edward Lin; Brett Croen; Nicholas Semenza; Brandon Rogowski; Nataliya Melnyk; Kyra Woloszczuk; Gina Cusimano; Matthew Bell; Sara Furukawa; Renee McLin; Pamela Marrero; Julie Sheidy; George P. Tegos; Crystal Nagle; Nathan Mege; Kristen Ulring; Vicki Seyfert-Margolis; Michelle Conway; Dave Francisco; Allyson Molzahn; Heidi Erickson; Connie Cathleen Wilson; Ron Schunk; Trina Hughes; Bianca Sierra; Kinga K. Smolen; Michael Desjardins; Simon van Haren; Xhoi Mitre; Jessica Cauley; Xiofang Li; Alexandra Tong; Bethany Evans; Christina Montesano; Jose Humberto Licona; Jonathan Krauss; Jun Bai Park Chang; Natalie Izaguirre; Omkar Chaudhary; Andreas Coppi; John Fournier; Subhasis Mohanty; M. Catherine Muenker; Allison Nelson; Khadir Raddassi; Michael Rainone; William Ruff; Syim Salahuddin; Wade L. Schulz; Pavithra Vijayakumar; Haowei Wang; Elsio Wunder Jr.; H. Patrick Young; Yujiao Zhao; Miti Saksena; Deena Altman; Erna Kojic; Komal Srivastava; Lily Q. Eaker; Maria Carolina Bermudez; Katherine F. Beach; Levy A. Sominsky; Arman Azad; Juan Manuel Carreno; Gagandeep Singh; Ariel Raskin; Johnstone Tcheou; Dominika Bielak; Hisaaki Kawabata; Lubbertus CF Mulder; Giulio Kleiner; Laurel Bristow; Laila Hussaini; Kieffer Hellmeister; Hady Samaha; Andrew Cheng; Christine Spainhour; Erin M. Scherer; Brandi Johnson; Amer Bechnak; Caroline R. Ciric; Lauren Hewitt; Bernadine Panganiban; Chistopher Huerta; Jacob Usher; Erin Carter; Nina Mcnair; Susan Pereira Ribeiro; Alexandra S. Lee; Evan Do; Andrea Fernandes; Monali Manohar; Thomas Hagan; Catherine Blish; Hena Naz Din; Jonasel Roque; Samuel S. Yang; Amanda E. Brunton; Peter E. Sullivan; Matthew Strnad; Zoe L. Lyski; Felicity J. Coulter; John L. Booth; Lauren A. Sinko; Lyle Moldawer; Brittany Borrensen; Brittney Roth-Manning; Li-Zhen Song; Ebony Nelson; Megan Lewis-Smith; Jacob Smith; Pablo Guaman Tipan; Nadia Siles; Sam Bazzi; Janelle Geltman; Kerin Hurley; Giovanni Gabriele; Scott Sieg; Matthew C. Altman; Patrice M. Becker; Nadine Rouphael.
Preprint in English | medRxiv | ID: ppmedrxiv-22273396

ABSTRACT

BackgroundBetter understanding of the association between characteristics of patients hospitalized with coronavirus disease 2019 (COVID-19) and outcome is needed to further improve upon patient management. MethodsImmunophenotyping Assessment in a COVID-19 Cohort (IMPACC) is a prospective, observational study of 1,164 patients from 20 hospitals across the United States. Disease severity was assessed using a 7-point ordinal scale based on degree of respiratory illness. Patients were prospectively surveyed for 1 year after discharge for post-acute sequalae of COVID-19 (PASC) through quarterly surveys. Demographics, comorbidities, radiographic findings, clinical laboratory values, SARS-CoV-2 PCR and serology were captured over a 28-day period. Multivariable logistic regression was performed. FindingsThe median age was 59 years (interquartile range [IQR] 20); 711 (61%) were men; overall mortality was 14%, and 228 (20%) required invasive mechanical ventilation. Unsupervised clustering of ordinal score over time revealed distinct disease course trajectories. Risk factors associated with prolonged hospitalization or death by day 28 included age [≥] 65 years (odds ratio [OR], 2.01; 95% CI 1.28-3.17), Hispanic ethnicity (OR, 1.71; 95% CI 1.13-2.57), elevated baseline creatinine (OR 2.80; 95% CI 1.63-4.80) or troponin (OR 1.89; 95% 1.03-3.47), baseline lymphopenia (OR 2.19; 95% CI 1.61-2.97), presence of infiltrate by chest imaging (OR 3.16; 95% CI 1.96-5.10), and high SARS-CoV2 viral load (OR 1.53; 95% CI 1.17-2.00). Fatal cases had the lowest ratio of SARS-CoV-2 antibody to viral load levels compared to other trajectories over time (p=0.001). 589 survivors (51%) completed at least one survey at follow-up with 305 (52%) having at least one symptom consistent with PASC, most commonly dyspnea (56% among symptomatic patients). Female sex was the only associated risk factor for PASC. InterpretationIntegration of PCR cycle threshold, and antibody values with demographics, comorbidities, and laboratory/radiographic findings identified risk factors for 28-day outcome severity, though only female sex was associated with PASC. Longitudinal clinical phenotyping offers important insights, and provides a framework for immunophenotyping for acute and long COVID-19. FundingNIH RESEARCH IN CONTEXTO_ST_ABSEvidence before this studyC_ST_ABSWe did a systematic search of the PubMed database from January 1st, 2020 until April 24th, 2022 using the search terms: "hospitalized" AND "SARS-CoV-2" OR "COVID-19" AND "Pro-spective" AND "Antibody" OR "PCR" OR "long term follow up" and applying the following filters: "Multicenter Study" AND "Observational Study". No language restrictions were applied. While clinical, laboratory, and radiographic features associated with severe COVID-19 in hospitalized adults have been described, description of the kinetics of SARS-CoV-2 specific assays available to clinicians (e.g. PCR and binding antibody) and their integration with other variables is scarce for both short and long term follow up. The current literature is comprised of several studies with small sample size, cross-sectional design with laboratory data typically only recorded at a single point in time (e.g., on admission), limited clinical characteristics, variable duration of follow up, single-center setting, retrospective analyses, kinetics of either PCR or antibody testing but not both, and outcomes such as death or, mechanical ventilation that do not allow delineation of variations in clinical course. Added value of this studyIn our large longitudinal multicenter cohort, the description of outcome severity, was not limited to survival versus death, but encompassed a clinical trajectory approach leveraging longitudinal data based on time in hospital, disease severity by ordinal scale based on degree of respiratory illness, and presence or absence of limitations at discharge. Fatal COVID-19 cases had the lowest ratio of antibody to viral load levels over time as compared to non-fatal cases. Integration of PCR cycle threshold and antibody values with demographics, baseline comorbidities, and laboratory/radiographic findings identified additional risk factors for outcome severity over the first 28 days. However, female sex was the only variable associated with persistence of symptoms over time. Persistence of symptoms was not associated with clinical trajectory over the first 28 days, nor with antibody/viral loads from the acute phase. Implications of all the available evidenceThe described calculated ratio (binding IgG/PCR Ct value) is unique compared to other studies, reflecting host pathogen interactions and representing an accessible approach for patient risk stratification. Integration of SARS-CoV-2 viral load and binding antibody kinetics with other laboratory as well as clinical characteristics in hospitalized COVID-19 patients can identify patients likely to have the most severe short-term outcomes, but is not predictive of symptom persistence at one year post-discharge.

2.
Preprint in English | medRxiv | ID: ppmedrxiv-22276228

ABSTRACT

Objectives: To compare the effectiveness of a primary COVID-19 vaccine series plus a booster dose with a primary series alone for the prevention of Omicron variant COVID-19 hospitalization. Design: Multicenter observational case-control study using the test-negative design to evaluate vaccine effectiveness (VE). Setting: Twenty-one hospitals in the United States (US). Participants: 3,181 adults hospitalized with an acute respiratory illness between December 26, 2021 and April 30, 2022, a period of SARS-CoV-2 Omicron variant (BA.1, BA.2) predominance. Participants included 1,572 (49%) case-patients with laboratory confirmed COVID-19 and 1,609 (51%) control patients who tested negative for SARS-CoV-2. Median age was 64 years, 48% were female, and 21% were immunocompromised; 798 (25%) were vaccinated with a primary series plus booster, 1,326 (42%) were vaccinated with a primary series alone, and 1,057 (33%) were unvaccinated. Main Outcome Measures: VE against COVID-19 hospitalization was calculated for a primary series plus a booster and a primary series alone by comparing the odds of being vaccinated with each of these regimens versus being unvaccinated among cases versus controls. VE analyses were stratified by immune status (immunocompetent; immunocompromised) because the recommended vaccine schedules are different for these groups. The primary analysis evaluated all COVID-19 vaccine types combined and secondary analyses evaluated specific vaccine products. Results: Among immunocompetent patients, VE against Omicron COVID-19 hospitalization for a primary series plus one booster of any vaccine product dose was 77% (95% CI: 71-82%), and for a primary series alone was 44% (95% CI: 31-54%) (p<0.001). VE was higher for a boosted regimen than a primary series alone for both mRNA vaccines used in the US (BNT162b2: primary series plus booster VE 80% (95% CI: 73-85%), primary series alone VE 46% (95% CI: 30-58%) [p<0.001]; mRNA-1273: primary series plus booster VE 77% (95% CI: 67-83%), primary series alone VE 47% (95% CI: 30-60%) [p<0.001]). Among immunocompromised patients, VE for a primary series of any vaccine product against Omicron COVID-19 hospitalization was 60% (95% CI: 41-73%). Insufficient sample size has accumulated to calculate effectiveness of boosted regimens for immunocompromised patients. Conclusions: Among immunocompetent people, a booster dose of COVID-19 vaccine provided additional benefit beyond a primary vaccine series alone for preventing COVID-19 hospitalization due to the Omicron variant.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-22270558

ABSTRACT

ObjectivesTo characterize the clinical severity of COVID-19 caused by Omicron, Delta, and Alpha SARS-CoV-2 variants among hospitalized adults and to compare the effectiveness of mRNA COVID-19 vaccines to prevent hospitalizations caused by each variant. DesignA case-control study of 11,690 hospitalized adults. SettingTwenty-one hospitals across the United States. ParticipantsThis study included 5728 cases hospitalized with COVID-19 and 5962 controls hospitalized without COVID-19. Cases were classified into SARS-CoV-2 variant groups based on viral whole genome sequencing, and if sequencing did not reveal a lineage, by the predominant circulating variant at the time of hospital admission: Alpha (March 11 to July 3, 2021), Delta (July 4 to December 25, 2021), and Omicron (December 26, 2021 to January 14, 2022). Main Outcome MeasuresVaccine effectiveness was calculated using a test-negative design for COVID-19 mRNA vaccines to prevent COVID-19 hospitalizations by each variant (Alpha, Delta, Omicron). Among hospitalized patients with COVID-19, disease severity on the WHO Clinical Progression Ordinal Scale was compared among variants using proportional odds regression. ResultsVaccine effectiveness of the mRNA vaccines to prevent COVID-19-associated hospitalizations included: 85% (95% CI: 82 to 88%) for 2 vaccine doses against Alpha; 85% (95% CI: 83 to 87%) for 2 doses against Delta; 94% (95% CI: 92 to 95%) for 3 doses against Delta; 65% (95% CI: 51 to 75%) for 2 doses against Omicron; and 86% (95% CI: 77 to 91%) for 3 doses against Omicron. Among hospitalized unvaccinated COVID-19 patients, severity on the WHO Clinical Progression Scale was higher for Delta than Alpha (adjusted proportional odds ratio [aPOR] 1.28, 95% CI: 1.11 to 1.46), and lower for Omicron than Delta (aPOR 0.61, 95% CI: 0.49 to 0.77). Compared to unvaccinated cases, severity was lower for vaccinated cases for each variant, including Alpha (aPOR 0.33, 95% CI: 0.23 to 0.49), Delta (aPOR 0.44, 95% CI: 0.37 to 0.51), and Omicron (aPOR 0.61, 95% CI: 0.44 to 0.85). ConclusionsmRNA vaccines were highly effective in preventing COVID-19-associated hospitalizations from Alpha, Delta, and Omicron variants, but three vaccine doses were required to achieve protection against Omicron similar to the protection that two doses provided against Delta and Alpha. Among adults hospitalized with COVID-19, Omicron caused less severe disease than Delta, but still resulted in substantial morbidity and mortality. Vaccinated patients hospitalized with COVID-19 had significantly lower disease severity than unvaccinated patients for all the variants.

SELECTION OF CITATIONS
SEARCH DETAIL