Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Transplant Cell Ther ; 30(6): 580.e1-580.e14, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38582286

ABSTRACT

Sinusoidal obstruction syndrome (SOS), also known as veno-occlusive disease (VOD), is a rare but potentially fatal complication following allogenic hematopoietic cell transplantation (allo-HCT). Timely identification of SOS/VOD to allow for prompt treatment is critical, but identifying a VOD-predictive biomarker remains challenging. Given the pivotal role of endothelial dysfunction in SOS/VOD pathophysiology, the CECinVOD study prospectively evaluated levels of circulating endothelial cells (CECs) in patients undergoing allo-HCT with a myeloablative conditioning (MAC) regimen to investigate the potential of CEC level in predicting and diagnosing SOS/VOD. A total of 150 patients from 11 Italian bone marrow transplantation units were enrolled. All participants were age >18 years and received a MAC regimen, putting them at elevated risk of developing SOS/VOD. Overall, 6 cases of SOS/VOD (4%) were recorded. CECs were detected using the Food and Drug Administration-approved CellSearch system, an immunomagnetic selection-based platform incorporating ferrofluid nanoparticles and fluorescent-labeled antibodies, and were defined as CD146+, CD105+, DAPI+, or CD45-. Blood samples were collected at the following time points: before (T0) and at the end of conditioning treatment (T1), at neutrophil engraftment (T2), and at 7 to 10 days postengraftment (T3). For patients who developed VOD, additional samples were collected at any suspected or proven VOD onset (T4) and weekly during defibrotide treatment (T5 to T8). A baseline CEC count >17/mL was associated with an elevated risk of SOS/VOD (P = .04), along with bilirubin level >1.5 mg/mL and a haploidentical donor hematopoietic stem cell source. Postconditioning regimen (T1) CEC levels were elevated (P = .02), and levels were further increased at engraftment (P < .0001). Additionally, patients developing SOS/VOD after engraftment, especially those with late-onset SOS/VOD, showed a markedly higher relative increase (>150%) in CEC count. Multivariate analysis supported these findings, along with a high Endothelial Activation and Stress Index (EASIX) score at engraftment (T2). Finally, CEC kinetics corresponded with defibrotide treatment. After the start of therapy (T4), CEC levels showed an initial increase in the first week (T5), followed by a progressive decrease during VOD treatment (T6 and T7) and a return to pre-SOS/VOD onset levels at resolution of the complication. This prospective multicenter study reveals a low incidence of SOS/VOD in high-risk patients compared to historical data, in line with recent reports. The results from the CECinVOD study collectively confirm the endothelial injury in allo-HCT and its role in in the development of SOS/VOD, suggesting that CEC level can be a valuable biomarker for diagnosing SOS/VOD and identifying patients at greater risk of this complication, especially late-onset SOS/VOD. Furthermore, CEC kinetics may support treatment strategies by providing insight into the optimal timing for discontinuing defibrotide treatment.


Subject(s)
Biomarkers , Endothelial Cells , Hematopoietic Stem Cell Transplantation , Hepatic Veno-Occlusive Disease , Humans , Hepatic Veno-Occlusive Disease/etiology , Hepatic Veno-Occlusive Disease/blood , Female , Male , Endothelial Cells/pathology , Endothelial Cells/metabolism , Hematopoietic Stem Cell Transplantation/adverse effects , Middle Aged , Adult , Biomarkers/blood , Transplantation Conditioning/adverse effects , Prospective Studies , Transplantation, Homologous/adverse effects , Aged , Polydeoxyribonucleotides/therapeutic use , Risk Factors , Young Adult
2.
NPJ Precis Oncol ; 8(1): 78, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38548846

ABSTRACT

Melanoma heterogeneity is a hurdle in metastatic disease management. Although the advent of targeted therapy has significantly improved patient outcomes, the occurrence of resistance makes monitoring of the tumor genetic landscape mandatory. Liquid biopsy could represent an important biomarker for the real-time tracing of disease evolution. Thus, we aimed to correlate liquid biopsy dynamics with treatment response and progression by devising a multiplatform approach applied to longitudinal melanoma patient monitoring. We conceived an approach that exploits Next Generation Sequencing (NGS) and droplet digital PCR, as well as the FDA-cleared platform CellSearch, to analyze circulating tumor DNA (ctDNA) trend and circulating melanoma cell (CMC) count, together with their customized genetic and copy number variation analysis. The approach was applied to 17 stage IV melanoma patients treated with BRAF/MEK inhibitors, followed for up to 28 months. BRAF mutations were detected in the plasma of 82% of patients. Single nucleotide variants known or suspected to confer resistance were identified in 70% of patients. Moreover, the amount of ctDNA, both at baseline and during response, correlated with the type and duration of the response itself, and the CMC count was confirmed to be a prognostic biomarker. This work provides proof of principle of the power of this approach and paves the way for a validation study aimed at evaluating early ctDNA-guided treatment decisions in stage IV melanoma. The NGS-based molecular profile complemented the analysis of ctDNA trend and, together with CMC analysis, revealed to be useful in capturing tumor evolution.

3.
Int J Mol Sci ; 24(15)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37569660

ABSTRACT

The Food and Drug Administration (FDA) has approved MAPK inhibitors as a treatment for melanoma patients carrying a mutation in codon V600 of the BRAF gene exclusively. However, BRAF mutations outside the V600 codon may occur in a small percentage of melanomas. Although these rare variants may cause B-RAF activation, their predictive response to B-RAF inhibitor treatments is still poorly understood. We exploited an integrated approach for mutation detection, tumor evolution tracking, and assessment of response to treatment in a metastatic melanoma patient carrying the rare p.T599dup B-RAF mutation. He was addressed to Dabrafenib/Trametinib targeted therapy, showing an initial dramatic response. In parallel, in-silico ligand-based homology modeling was set up and performed on this and an additional B-RAF rare variant (p.A598_T599insV) to unveil and justify the success of the B-RAF inhibitory activity of Dabrafenib, showing that it could adeptly bind both these variants in a similar manner to how it binds and inhibits the V600E mutant. These findings open up the possibility of broadening the spectrum of BRAF inhibitor-sensitive mutations beyond mutations at codon V600, suggesting that B-RAF V600 WT melanomas should undergo more specific investigations before ruling out the possibility of targeted therapy.


Subject(s)
Melanoma , Skin Neoplasms , Male , Humans , Proto-Oncogene Proteins B-raf/genetics , Melanoma/drug therapy , Melanoma/genetics , Melanoma/pathology , Imidazoles/pharmacology , Imidazoles/therapeutic use , Oximes/pharmacology , Oximes/therapeutic use , Mutation , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Pyridones/therapeutic use , Pyrimidinones/therapeutic use , Skin Neoplasms/pathology
4.
Cancers (Basel) ; 14(17)2022 Aug 27.
Article in English | MEDLINE | ID: mdl-36077693

ABSTRACT

The systemic treatment of metastatic melanoma has radically changed, due to an improvement in the understanding of its genetic landscape and the advent of targeted therapy. However, the response to BRAF/MEK inhibitors is transitory, and big efforts were made to identify the mechanisms underlying the resistance. We exploited a combined approach, encompassing liquid biopsy analysis and molecular dynamics simulation, for tracking tumor evolution, and in parallel defining the best treatment option. The samples at different time points were collected from a BRAF-mutant melanoma patient who developed an early resistance to dabrafenib/trametinib. The analysis of the circulating tumor DNA (ctDNA) identified the MEK1 p.P124L mutation that confers resistance to trametinib. With an in silico modeling, we identified cobimetinib as an alternative MEK inhibitor, and consequently suggested a therapy switch to vemurafenib/cobimetinib. The patient response was followed by ctDNA tracking and circulating melanoma cell (CMC) count. The cobimetinib administration led to an important reduction in the BRAF p.V600E and MEK1 p.P124L allele fractions and in the CMC number, features suggestive of a putative response. In summary, this study emphasizes the usefulness of a liquid biopsy-based approach combined with in silico simulation, to track real-time tumor evolution while assessing the best treatment option.

5.
Cancers (Basel) ; 13(24)2021 Dec 10.
Article in English | MEDLINE | ID: mdl-34944843

ABSTRACT

Malignant melanoma is the most serious, life-threatening form of all dermatologic diseases, with a poor prognosis in the presence of metastases and advanced disease. Despite recent advances in targeted therapy and immunotherapy, there is still a critical need for a better understanding of the fundamental mechanisms behind melanoma progression and resistance onset. Recent advances in genome-wide methylation methods have revealed that aberrant changes in the pattern of DNA methylation play an important role in many aspects of cancer progression, including cell proliferation and migration, evasion of cell death, invasion, and metastasization. The purpose of the current review was to gather evidence regarding the usefulness of DNA methylation tracking in liquid biopsy as a potential biomarker in melanoma. We investigated the key genes and signal transduction pathways that have been found to be altered epigenetically in melanoma. We then highlighted the circulating tumor components present in blood, including circulating melanoma cells (CMC), circulating tumor DNA (ctDNA), and tumor-derived extracellular vesicles (EVs), as a valuable source for identifying relevant aberrations in DNA methylation. Finally, we focused on DNA methylation signatures as a marker for tracking response to therapy and resistance, thus facilitating personalized medicine and decision-making in the treatment of melanoma patients.

6.
Diagnostics (Basel) ; 11(6)2021 Jun 19.
Article in English | MEDLINE | ID: mdl-34205256

ABSTRACT

Extracellular vesicles (EVs) are important mediators of intercellular communication playing a pivotal role in the regulation of physiological and pathological processes, including cancer. In particular, there is significant evidence suggesting that tumor-derived EVs exert an immunosuppressive activity during cancer progression, as well as stimulate tumor cell migration, angiogenesis, invasion and metastasis. The use of EVs as a liquid biopsy is currently a fast-growing area of research in medicine, with the potential to provide a step-change in the diagnosis and treatment of cancer, allowing the prediction of both therapy response and prognosis. EVs could be useful not only as biomarkers but also as drug delivery systems, and may represent a target for anticancer therapy. In this review, we attempted to summarize the current knowledge about the techniques used for the isolation of EVs and their roles in cancer biology, as liquid biopsy biomarkers and as therapeutic tools and targets.

7.
Nat Commun ; 11(1): 6069, 2020 11 27.
Article in English | MEDLINE | ID: mdl-33247103

ABSTRACT

Membrane contact sites between virtually any known organelle have been documented and, in the last decades, their study received momentum due to their importance for fundamental activities of the cell and for the subtle comprehension of many human diseases. The lack of tools to finely image inter-organelle proximity hindered our understanding on how these subcellular communication hubs mediate and regulate cell homeostasis. We develop an improved and expanded palette of split-GFP-based contact site sensors (SPLICS) for the detection of single and multiple organelle contact sites within a scalable distance range. We demonstrate their flexibility under physiological conditions and in living organisms.


Subject(s)
Genes, Reporter , Green Fluorescent Proteins/metabolism , Organelles/metabolism , Animals , Calcium/metabolism , Cell Membrane/metabolism , Cytosol/metabolism , Endoplasmic Reticulum/metabolism , HeLa Cells , Humans , Neurons/metabolism , Rats, Sprague-Dawley , Zebrafish/metabolism
8.
Cell Death Dis ; 10(11): 857, 2019 11 12.
Article in English | MEDLINE | ID: mdl-31719530

ABSTRACT

Parkinson's disease (PD), the second most common neurodegenerative disorder, is characterized by dopaminergic neuronal loss that initiates in the substantia nigra pars compacta and by the formation of intracellular inclusions mainly constituted by aberrant α-synuclein (α-syn) deposits known as Lewy bodies. Most cases of PD are sporadic, but about 10% are familial, among them those caused by mutations in SNCA gene have an autosomal dominant transmission. SNCA encodes α-syn, a small 140-amino acids protein that, under physiological conditions, is mainly localized at the presynaptic terminals. It is prevalently cytosolic, but its presence has been reported in the nucleus, in the mitochondria and, more recently, in the mitochondria-associated ER membranes (MAMs). Whether different cellular localizations may reflect specific α-syn activities is presently unclear and its action at mitochondrial level is still a matter of debate. Mounting evidence supports a role for α-syn in several mitochondria-derived activities, among which maintenance of mitochondrial morphology and modulation of complex I and ATP synthase activity. α-syn has been proposed to localize at the outer membrane (OMM), in the intermembrane space (IMS), at the inner membrane (IMM) and in the mitochondrial matrix, but a clear and comparative analysis of the sub-mitochondrial localization of WT and mutant α-syn is missing. Furthermore, the reasons for this spread sub-mitochondrial localization under physiological and pathological circumstances remain elusive. In this context, we decided to selectively monitor the sub-mitochondrial distribution of the WT and PD-related α-syn mutants A53T and A30P by taking advantage from a bimolecular fluorescence complementation (BiFC) approach. We also investigated whether cell stress could trigger α-syn translocation within the different mitochondrial sub-compartments and whether PD-related mutations could impinge on it. Interestingly, the artificial targeting of α-syn WT (but not of the mutants) to the mitochondrial matrix impacts on ATP production, suggesting a potential role within this compartment.


Subject(s)
Dopaminergic Neurons/metabolism , Mitochondria/genetics , Parkinson Disease/metabolism , alpha-Synuclein/genetics , Adenosine Triphosphate/biosynthesis , Adenosine Triphosphate/genetics , Cytosol/metabolism , Cytosol/pathology , Dopamine/genetics , Dopamine/metabolism , Dopaminergic Neurons/pathology , Gene Expression/genetics , Humans , Mitochondria/metabolism , Mitochondria/pathology , Mitochondrial Proton-Translocating ATPases/genetics , Mitochondrial Proton-Translocating ATPases/metabolism , Mutant Proteins/genetics , Parkinson Disease/pathology , Pars Compacta/metabolism , Pars Compacta/pathology , Presynaptic Terminals/metabolism
9.
Cells ; 8(9)2019 09 12.
Article in English | MEDLINE | ID: mdl-31547305

ABSTRACT

Familial Parkinson's disease (PD) is associated with duplication or mutations of α-synuclein gene, whose product is a presynaptic cytosolic protein also found in mitochondria and in mitochondrial-associated ER membranes. We have originally shown the role of α-syn as a modulator of the ER-mitochondria interface and mitochondrial Ca2+ transients, suggesting that, at mild levels of expression, α-syn sustains cell metabolism. Here, we investigated the possibility that α-syn action on ER-mitochondria tethering could be compromised by the presence of PD-related mutations. The clarification of this aspect could contribute to elucidate key mechanisms underlying PD. The findings reported so far are not consistent, possibly because of the different methods used to evaluate ER-mitochondria connectivity. Here, the effects of the PD-related α-syn mutations A53T and A30P on ER-mitochondria relationship were investigated in respect to Ca2+ handling and mitochondrial function using a newly generated SPLICS sensor and aequorin-based Ca2+measurements. We provided evidence that A53T and A30P amino acid substitution does not affect the ability of α-syn to enhance ER/mitochondria tethering and mitochondrial Ca2+ transients, but that this action was lost as soon as a high amount of TAT-delivered A53T and A30P α-syn mutants caused the redistribution of α-syn from cytoplasm to foci. Our results suggest a loss of function mechanism and highlight a possible connection between α-syn and ER-mitochondria Ca2+ cross-talk impairment to the pathogenesis of PD.


Subject(s)
Calcium Signaling , Endoplasmic Reticulum/metabolism , Mitochondria/metabolism , Parkinson Disease/metabolism , alpha-Synuclein/genetics , HeLa Cells , Humans , Mutation , Parkinson Disease/pathology
10.
Front Mol Neurosci ; 12: 55, 2019.
Article in English | MEDLINE | ID: mdl-30967759

ABSTRACT

Parkinson's disease (PD) is a debilitating neurodegenerative disorder characterized by loss of dopaminergic neurons in the substantia nigra pars compacta. The causes of PD in humans are still unknown, although metabolic characteristics of the neurons affected by the disease have been implicated in their selective susceptibility. Mitochondrial dysfunction and proteostatic stress are recognized to be important in the pathogenesis of both familial and sporadic PD, and they both culminate in bioenergetic deficits. Exposure to calcium overload has recently emerged as a key determinant, and pharmacological treatment that inhibits Ca2+ entry diminishes neuronal damage in chemical models of PD. In this review, we first introduce general concepts on neuronal Ca2+ signaling and then summarize the current knowledge on fundamental properties of substantia nigra pars compacta dopaminergic neurons, on the role of the interplay between Ca2+ and dopamine signaling in neuronal activity and susceptibility to cell death. We also discuss the possible involvement of a "neglected" player, the Neuronal Calcium Sensor-1 (NCS-1), which has been shown to participate to dopaminergic signaling by regulating dopamine dependent receptor desensitization in normal brain but, data supporting a direct role in PD pathogenesis are still missing. However, it is intriguing to speculate that the Ca2+-dependent modulation of NCS-1 activity could eventually counteract dopaminergic neurons degeneration.

11.
Biochim Biophys Acta Mol Basis Dis ; 1864(10): 3247-3256, 2018 10.
Article in English | MEDLINE | ID: mdl-30006151

ABSTRACT

Intracellular neurofibrillary tangles (NFT) composed by tau and extracellular amyloid beta (Aß) plaques accumulate in Alzheimer's disease (AD) and contribute to neuronal dysfunction. Mitochondrial dysfunction and neurodegeneration are increasingly considered two faces of the same coin and an early pathological event in AD. Compelling evidence indicates that tau and mitochondria are closely linked and suggests that tau-dependent modulation of mitochondrial functions might be a trigger for the neurodegeneration process; however, whether this occurs either directly or indirectly is not clear. Furthermore, whether tau influences cellular Ca2+ handling and ER-mitochondria cross-talk is yet to be explored. Here, by focusing on wt tau, either full-length (2N4R) or the caspase 3-cleaved form truncated at the C-terminus (2N4RΔC20), we examined the above-mentioned aspects. Using new genetically encoded split-GFP-based tools and organelle-targeted aequorin probes, we assessed: i) tau distribution within the mitochondrial sub-compartments; ii) the effect of tau on the short- (8-10 nm) and the long- (40-50 nm) range ER-mitochondria interactions; and iii) the effect of tau on cytosolic, ER and mitochondrial Ca2+ homeostasis. Our results indicate that a fraction of tau is found at the outer mitochondrial membrane (OMM) and within the inner mitochondrial space (IMS), suggesting a potential tau-dependent regulation of mitochondrial functions. The ER Ca2+ content and the short-range ER-mitochondria interactions were selectively affected by the expression of the caspase 3-cleaved 2N4RΔC20 tau, indicating that Ca2+ mis-handling and defects in the ER-mitochondria communications might be an important pathological event in tau-related dysfunction and thereby contributing to neurodegeneration. Finally, our data provide new insights into the molecular mechanisms underlying tauopathies.


Subject(s)
Calcium/metabolism , Caspases/metabolism , Endoplasmic Reticulum/metabolism , Mitochondria/metabolism , tau Proteins/metabolism , Alzheimer Disease/metabolism , Animals , Cytosol/metabolism , HeLa Cells , Humans , Mice , Neurons/metabolism , tau Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...