Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Anim Microbiome ; 3(1): 12, 2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33499997

ABSTRACT

BACKGROUND: Across taxa, animals with depleted intestinal microbiomes show disrupted behavioral phenotypes. Axenic (i.e., microbe-free) mice, zebrafish, and fruit flies exhibit increased locomotor behavior, or hyperactivity. The mechanism through which bacteria interact with host cells to trigger normal neurobehavioral development in larval zebrafish is not well understood. Here, we monoassociated zebrafish with either one of six different zebrafish-associated bacteria, mixtures of these host-associates, or with an environmental bacterial isolate. RESULTS: As predicted, the axenic cohort was hyperactive. Monoassociation with three different host-associated bacterial species, as well as with the mixtures, resulted in control-like locomotor behavior. Monoassociation with one host-associate and the environmental isolate resulted in the hyperactive phenotype characteristic of axenic larvae, while monoassociation with two other host-associated bacteria partially blocked this phenotype. Furthermore, we found an inverse relationship between the total concentration of bacteria per larvae and locomotor behavior. Lastly, in the axenic and associated cohorts, but not in the larvae with complex communities, we detected unexpected bacteria, some of which may be present as facultative predators. CONCLUSIONS: These data support a growing body of evidence that individual species of bacteria can have different effects on host behavior, potentially related to their success at intestinal colonization. Specific to the zebrafish model, our results suggest that differences in the composition of microbes in fish facilities could affect the results of behavioral assays within pharmacological and toxicological studies.

2.
Environ Health Perspect ; 128(4): 47005, 2020 04.
Article in English | MEDLINE | ID: mdl-32271623

ABSTRACT

BACKGROUND: Per- and polyfluoroalkyl substances (PFAS) are a diverse class of industrial chemicals with widespread environmental occurrence. Exposure to long-chain PFAS is associated with developmental toxicity, prompting their replacement with short-chain and fluoroether compounds. There is growing public concern over the safety of replacement PFAS. OBJECTIVE: We aimed to group PFAS based on shared toxicity phenotypes. METHODS: Zebrafish were developmentally exposed to 4,8-dioxa-3H-perfluorononanoate (ADONA), perfluoro-2-propoxypropanoic acid (GenX Free Acid), perfluoro-3,6-dioxa-4-methyl-7-octene-1-sulfonic acid (PFESA1), perfluorohexanesulfonic acid (PFHxS), perfluorohexanoic acid (PFHxA), perfluoro-n-octanoic acid (PFOA), perfluorooctanesulfonic acid (PFOS), or 0.4% dimethyl sulfoxide (DMSO) daily from 0-5 d post fertilization (dpf). At 6 dpf, developmental toxicity and developmental neurotoxicity assays were performed, and targeted analytical chemistry was used to measure media and tissue doses. To test whether aliphatic sulfonic acid PFAS cause the same toxicity phenotypes, perfluorobutanesulfonic acid (PFBS; 4-carbon), perfluoropentanesulfonic acid (PFPeS; 5-carbon), PFHxS (6-carbon), perfluoroheptanesulfonic acid (PFHpS; 7-carbon), and PFOS (8-carbon) were evaluated. RESULTS: PFHxS or PFOS exposure caused failed swim bladder inflation, abnormal ventroflexion of the tail, and hyperactivity at nonteratogenic concentrations. Exposure to PFHxA resulted in a unique hyperactivity signature. ADONA, PFESA1, or PFOA exposure resulted in detectable levels of parent compound in larval tissue but yielded negative toxicity results. GenX was unstable in DMSO, but stable and negative for toxicity when diluted in deionized water. Exposure to PFPeS, PFHxS, PFHpS, or PFOS resulted in a shared toxicity phenotype characterized by body axis and swim bladder defects and hyperactivity. CONCLUSIONS: All emerging fluoroether PFAS tested were negative for evaluated outcomes. Two unique toxicity signatures were identified arising from structurally dissimilar PFAS. Among sulfonic acid aliphatic PFAS, chemical potencies were correlated with increasing carbon chain length for developmental neurotoxicity, but not developmental toxicity. This study identified relationships between chemical structures and in vivo phenotypes that may arise from shared mechanisms of PFAS toxicity. These data suggest that developmental neurotoxicity is an important end point to consider for this class of widely occurring environmental chemicals. https://doi.org/10.1289/EHP5843.


Subject(s)
Fluorocarbons/toxicity , Neurotoxins/toxicity , Propionates/toxicity , Water Pollutants, Chemical/toxicity , Zebrafish , Animals , Dose-Response Relationship, Drug , Tissue Distribution , Zebrafish/growth & development
3.
Neurotoxicology ; 76: 235-244, 2020 01.
Article in English | MEDLINE | ID: mdl-31783042

ABSTRACT

Susceptibility to xenobiotic exposures is variable. One factor that might account for this is the microbiome, which encompasses all microorganisms, their encoded genes, and associated functions that colonize a host organism. Microbiota harbor the capacity to affect the toxicokinetics and toxicodynamics of xenobiotic exposures. The neurotoxicological effects of environmental chemicals may be modified by intestinal microbes via the microbiota-gut-brain axis. This is a complex, bi-directional signaling pathway between intestinal microbes and the host nervous system. As a model organism, zebrafish are extremely well-placed to illuminate mechanisms by which microbiota modify the developmental neurotoxicity of environmental chemicals. The goal of this review article is to examine the microbiota-gut-brain axis in a toxicological context, specifically focusing on the strengths and weaknesses of the zebrafish model for the investigation of interactions between xenobiotic agents and host-associated microbes. Previous studies describing the relationship between intestinal microbes and host neurodevelopment will be discussed. From a neurotoxicological perspective, studies utilizing zebrafish to assess links between neurotoxicological outcomes and the microbiome are emphasized. Overall, there are major gaps in our understanding the mechanisms by which microbiota interact with xenobiotics to cause or modify host neurotoxicity. In this review, we demonstrate that zebrafish are an ideal model system for studying the complex relationship between chemical exposures, microorganisms, and host neurotoxicological outcomes.


Subject(s)
Brain/drug effects , Brain/microbiology , Gastrointestinal Microbiome/drug effects , Xenobiotics/toxicity , Animals , Models, Animal , Zebrafish
4.
Toxicol Sci ; 172(1): 109-122, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31504981

ABSTRACT

Microbiota regulate important physiologic processes during early host development. They also biotransform xenobiotics and serve as key intermediaries for chemical exposure. Antimicrobial agents in the environment may disrupt these complex interactions and alter key metabolic functions provided by host-associated microbiota. To examine the role of microbiota in xenobiotic metabolism, we exposed zebrafish larvae to the antimicrobial agent triclosan. Conventionally colonized (CC), microbe-free axenic (AX), or axenic colonized on day 1 (AC1) zebrafish were exposed to 0.16-0.30 µM triclosan or vehicle on days 1, 6, 7, 8, and 9 days post fertilization (dpf). After 6 and 10 dpf, host-associated microbial community structure and putative function were assessed by 16S rRNA gene sequencing. At 10 dpf, triclosan exposure selected for bacterial taxa, including Rheinheimera. Triclosan-selected microbes were predicted to be enriched in pathways related to mechanisms of antibiotic resistance, sulfonation, oxidative stress, and drug metabolism. Furthermore, at 10 dpf, colonized zebrafish contained 2.5-3 times more triclosan relative to AX larvae. Nontargeted chemical analysis revealed that, relative to AX larvae, both cohorts of colonized larvae showed elevations in 23 chemical features, including parent triclosan and putative triclosan sulfate. Taken together, these data suggest that triclosan exposure selects for microbes that harbor the capacity to biotransform triclosan into chemical metabolites with unknown toxicity profiles. More broadly, these data support the concept that microbiota modify the toxicokinetics of xenobiotic exposure.

5.
Sci Rep ; 9(1): 7064, 2019 05 08.
Article in English | MEDLINE | ID: mdl-31068624

ABSTRACT

Estrogenic chemicals are widespread environmental contaminants associated with diverse health and ecological effects. During early vertebrate development, estrogen receptor signaling is critical for many different physiologic responses, including nervous system function. Recently, host-associated microbiota have been shown to influence neurodevelopment. Here, we hypothesized that microbiota may biotransform exogenous 17-ßestradiol (E2) and modify E2 effects on swimming behavior. Colonized zebrafish were continuously exposed to non-teratogenic E2 concentrations from 1 to 10 days post-fertilization (dpf). Changes in microbial composition and predicted metagenomic function were evaluated. Locomotor activity was assessed in colonized and axenic (microbe-free) zebrafish exposed to E2 using a standard light/dark behavioral assay. Zebrafish tissue was collected for chemistry analyses. While E2 exposure did not alter microbial composition or putative function, colonized E2-exposed larvae showed reduced locomotor activity in the light, in contrast to axenic E2-exposed larvae, which exhibited normal behavior. Measured E2 concentrations were significantly higher in axenic relative to colonized zebrafish. Integrated peak area for putative sulfonated and glucuronidated E2 metabolites showed a similar trend. These data demonstrate that E2 locomotor effects in the light phase are dependent on the presence of microbiota and suggest that microbiota influence chemical E2 toxicokinetics. More broadly, this work supports the concept that microbial colonization status may influence chemical toxicity.


Subject(s)
Estradiol/pharmacology , Germ-Free Life/drug effects , Microbiota/genetics , Zebrafish/embryology , Zebrafish/microbiology , Animals , Embryonic Development/drug effects , Estradiol/metabolism , Estrogens/metabolism , Estrogens/pharmacology , Larva/drug effects , Larva/metabolism , Locomotion/drug effects , Microbiota/drug effects , Neurogenesis/drug effects , RNA, Ribosomal, 16S/genetics , Zebrafish/metabolism
6.
Toxicol Sci ; 167(2): 468-483, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30321396

ABSTRACT

Host-associated microbiota can biotransform xenobiotics, mediate health effects of chemical exposure, and play important roles in early development. Bisphenol A (BPA) is a widespread environmental chemical that has been associated with adverse endocrine and neurodevelopmental effects, some of which may be mediated by microbiota. Growing public concern over the safety of BPA has resulted in its replacement with structurally similar alternatives. In this study, we evaluated whether BPA and BPA alternatives alter microbiota and modulate secondary adverse behavioral effects in zebrafish. Zebrafish were developmentally exposed to BPA, Bisphenol AF (BPAF), Bisphenol B (BPB), Bisphenol F (BPF), or Bisphenol S (BPS). At 10 days post fertilization (dpf), toxicity assessments were completed and 16S rRNA gene sequencing was performed to evaluate potential chemical-dependent shifts in microbial community structure and predicted function. A standard light/dark behavioral assay was used to assess locomotor activity. Based on developmental toxicity assessments at 10 dpf, a range of potencies was observed: BPAF > BPB > BPF ∼ BPA > BPS. Analysis of 16S rRNA gene sequencing data showed significant concentration-dependent disruption of microbial community structure and enrichment of putative microbial functions with exposure to BPS, BPA, or BPF, but not BPB or BPAF. Interestingly, microbial disruption was inversely related to host developmental toxicity and estrogenicity. Exposure to BP analogs did not cause behavioral effects at 10 dpf. Our findings indicate that some BP analogs disrupt host microbiota early in life and demonstrate novel chemical-microbiota interactions that may add important context to current hazard identification strategies.


Subject(s)
Benzhydryl Compounds/toxicity , Environmental Pollutants/toxicity , Larva/drug effects , Microbiota/drug effects , Phenols/toxicity , Zebrafish/growth & development , Animals , Behavior, Animal/drug effects , Benzhydryl Compounds/chemistry , Dose-Response Relationship, Drug , Environmental Pollutants/chemistry , Larva/microbiology , Microbiota/genetics , Phenols/chemistry , RNA, Ribosomal, 16S , Structure-Activity Relationship , Zebrafish/microbiology
7.
Sci Rep ; 7(1): 11244, 2017 09 11.
Article in English | MEDLINE | ID: mdl-28894128

ABSTRACT

Changes in resident microbiota may have wide-ranging effects on human health. We investigated whether early life microbial disruption alters neurodevelopment and behavior in larval zebrafish. Conventionally colonized, axenic, and axenic larvae colonized at 1 day post fertilization (dpf) were evaluated using a standard locomotor assay. At 10 dpf, axenic zebrafish exhibited hyperactivity compared to conventionalized and conventionally colonized controls. Impairment of host colonization using antibiotics also caused hyperactivity in conventionally colonized larvae. To determine whether there is a developmental requirement for microbial colonization, axenic embryos were serially colonized on 1, 3, 6, or 9 dpf and evaluated on 10 dpf. Normal activity levels were observed in axenic larvae colonized on 1-6 dpf, but not on 9 dpf. Colonization of axenic embryos at 1 dpf with individual bacterial species Aeromonas veronii or Vibrio cholerae was sufficient to block locomotor hyperactivity at 10 dpf. Exposure to heat-killed bacteria or microbe-associated molecular patterns pam3CSK4 or Poly(I:C) was not sufficient to block hyperactivity in axenic larvae. These data show that microbial colonization during early life is required for normal neurobehavioral development and support the concept that antibiotics and other environmental chemicals may exert neurobehavioral effects via disruption of host-associated microbial communities.


Subject(s)
Gastrointestinal Microbiome , Nervous System/growth & development , Zebrafish/growth & development , Zebrafish/microbiology , Aeromonas veronii/growth & development , Animals , Anti-Bacterial Agents/administration & dosage , Behavior, Animal , Embryo, Nonmammalian , Larva/growth & development , Larva/microbiology , Locomotion , Vibrio cholerae/growth & development
SELECTION OF CITATIONS
SEARCH DETAIL
...