Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Negl Trop Dis ; 10(12): e0005140, 2016 12.
Article in English | MEDLINE | ID: mdl-27941966

ABSTRACT

Treatment for human African trypanosomiasis is dependent on the species of trypanosome causing the disease and the stage of the disease (stage 1 defined by parasites being present in blood and lymphatics whilst for stage 2, parasites are found beyond the blood-brain barrier in the cerebrospinal fluid (CSF)). Currently, staging relies upon detecting the very low number of parasites or elevated white blood cell numbers in CSF. Improved staging is desirable, as is the elimination of the need for lumbar puncture. Here we use metabolomics to probe samples of CSF, plasma and urine from 40 Angolan patients infected with Trypanosoma brucei gambiense, at different disease stages. Urine samples provided no robust markers indicative of infection or stage of infection due to inherent variability in urine concentrations. Biomarkers in CSF were able to distinguish patients at stage 1 or advanced stage 2 with absolute specificity. Eleven metabolites clearly distinguished the stage in most patients and two of these (neopterin and 5-hydroxytryptophan) showed 100% specificity and sensitivity between our stage 1 and advanced stage 2 samples. Neopterin is an inflammatory biomarker previously shown in CSF of stage 2 but not stage 1 patients. 5-hydroxytryptophan is an important metabolite in the serotonin synthetic pathway, the key pathway in determining somnolence, thus offering a possible link to the eponymous symptoms of "sleeping sickness". Plasma also yielded several biomarkers clearly indicative of the presence (87% sensitivity and 95% specificity) and stage of disease (92% sensitivity and 81% specificity). A logistic regression model including these metabolites showed clear separation of patients being either at stage 1 or advanced stage 2 or indeed diseased (both stages) versus control.


Subject(s)
Biomarkers/analysis , Trypanosoma brucei gambiense/metabolism , Trypanosomiasis, African/diagnosis , Trypanosomiasis, African/parasitology , 5-Hydroxytryptophan/blood , 5-Hydroxytryptophan/cerebrospinal fluid , 5-Hydroxytryptophan/isolation & purification , 5-Hydroxytryptophan/urine , Adolescent , Adult , Biomarkers/blood , Biomarkers/cerebrospinal fluid , Biomarkers/urine , Blood-Brain Barrier , Female , Humans , Male , Metabolomics/methods , Neopterin/blood , Neopterin/cerebrospinal fluid , Neopterin/isolation & purification , Neopterin/urine , Regression Analysis , Sensitivity and Specificity , Young Adult
2.
Nucleic Acids Res ; 43(Database issue): D637-44, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25300491

ABSTRACT

The metabolic network of a cell represents the catabolic and anabolic reactions that interconvert small molecules (metabolites) through the activity of enzymes, transporters and non-catalyzed chemical reactions. Our understanding of individual metabolic networks is increasing as we learn more about the enzymes that are active in particular cells under particular conditions and as technologies advance to allow detailed measurements of the cellular metabolome. Metabolic network databases are of increasing importance in allowing us to contextualise data sets emerging from transcriptomic, proteomic and metabolomic experiments. Here we present a dynamic database, TrypanoCyc (http://www.metexplore.fr/trypanocyc/), which describes the generic and condition-specific metabolic network of Trypanosoma brucei, a parasitic protozoan responsible for human and animal African trypanosomiasis. In addition to enabling navigation through the BioCyc-based TrypanoCyc interface, we have also implemented a network-based representation of the information through MetExplore, yielding a novel environment in which to visualise the metabolism of this important parasite.


Subject(s)
Databases, Chemical , Trypanosoma brucei brucei/metabolism , Data Mining , Internet , Metabolic Networks and Pathways , Proteomics , Trypanosoma brucei brucei/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...