Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Database (Oxford) ; 20232023 11 16.
Article in English | MEDLINE | ID: mdl-37971714

ABSTRACT

Diploid A-genome wheat (einkorn wheat) presents a nutrition-rich option as an ancient grain crop and a resource for the improvement of bread wheat against abiotic and biotic stresses. Realizing the importance of this wheat species, reference-level assemblies of two einkorn wheat accessions were generated (wild and domesticated). This work reports an einkorn genome database that provides an interface to the cereals research community to perform comparative genomics, applied genetics and breeding research. It features queries for annotated genes, the use of a recent genome browser release, and the ability to search for sequence alignments using a modern BLAST interface. Other features include a comparison of reference einkorn assemblies with other wheat cultivars through genomic synteny visualization and an alignment visualization tool for BLAST results. Altogether, this resource will help wheat research and breeding. Database URL  https://wheat.pw.usda.gov/GG3/pangenome.


Subject(s)
Genome, Plant , Triticum , Triticum/genetics , Genome, Plant/genetics , Plant Breeding , Genomics/methods , Genetic Association Studies
2.
Nature ; 620(7975): 830-838, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37532937

ABSTRACT

Einkorn (Triticum monococcum) was the first domesticated wheat species, and was central to the birth of agriculture and the Neolithic Revolution in the Fertile Crescent around 10,000 years ago1,2. Here we generate and analyse 5.2-Gb genome assemblies for wild and domesticated einkorn, including completely assembled centromeres. Einkorn centromeres are highly dynamic, showing evidence of ancient and recent centromere shifts caused by structural rearrangements. Whole-genome sequencing analysis of a diversity panel uncovered the population structure and evolutionary history of einkorn, revealing complex patterns of hybridizations and introgressions after the dispersal of domesticated einkorn from the Fertile Crescent. We also show that around 1% of the modern bread wheat (Triticum aestivum) A subgenome originates from einkorn. These resources and findings highlight the history of einkorn evolution and provide a basis to accelerate the genomics-assisted improvement of einkorn and bread wheat.


Subject(s)
Crop Production , Genome, Plant , Genomics , Triticum , Triticum/classification , Triticum/genetics , Crop Production/history , History, Ancient , Whole Genome Sequencing , Genetic Introgression , Hybridization, Genetic , Bread/history , Genome, Plant/genetics , Centromere/genetics
3.
Nat Plants ; 9(7): 1067-1080, 2023 07.
Article in English | MEDLINE | ID: mdl-37322127

ABSTRACT

Symbiotic interactions such as the nitrogen-fixing root nodule symbiosis (RNS) have structured ecosystems during the evolution of life. Here we aimed at reconstructing ancestral and intermediate steps that shaped RNS observed in extant flowering plants. We compared the symbiotic transcriptomic responses of nine host plants, including the mimosoid legume Mimosa pudica for which we assembled a chromosome-level genome. We reconstructed the ancestral RNS transcriptome composed of most known symbiotic genes together with hundreds of novel candidates. Cross-referencing with transcriptomic data in response to experimentally evolved bacterial strains with gradual symbiotic proficiencies, we found the response to bacterial signals, nodule infection, nodule organogenesis and nitrogen fixation to be ancestral. By contrast, the release of symbiosomes was associated with recently evolved genes encoding small proteins in each lineage. We demonstrate that the symbiotic response was mostly in place in the most recent common ancestor of the RNS-forming species more than 90 million years ago.


Subject(s)
Fabaceae , Symbiosis , Symbiosis/physiology , Ecosystem , Nitrogen Fixation/genetics , Bacteria
4.
Proc Natl Acad Sci U S A ; 120(14): e2205783119, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36972449

ABSTRACT

Crop wild relatives represent valuable sources of alleles for crop improvement, including adaptation to climate change and emerging diseases. However, introgressions from wild relatives might have deleterious effects on desirable traits, including yield, due to linkage drag. Here, we analyzed the genomic and phenotypic impacts of wild introgressions in inbred lines of cultivated sunflower to estimate the impacts of linkage drag. First, we generated reference sequences for seven cultivated and one wild sunflower genotype, as well as improved assemblies for two additional cultivars. Next, relying on previously generated sequences from wild donor species, we identified introgressions in the cultivated reference sequences, as well as the sequence and structural variants they contain. We then used a ridge-regression best linear unbiased prediction (BLUP) model to test the effects of the introgressions on phenotypic traits in the cultivated sunflower association mapping population. We found that introgression has introduced substantial sequence and structural variation into the cultivated sunflower gene pool, including >3,000 new genes. While introgressions reduced genetic load at protein-coding sequences, they mostly had negative impacts on yield and quality traits. Introgressions found at high frequency in the cultivated gene pool had larger effects than low-frequency introgressions, suggesting that the former likely were targeted by artificial selection. Also, introgressions from more distantly related species were more likely to be maladaptive than those from the wild progenitor of cultivated sunflower. Thus, breeding efforts should focus, as far as possible, on closely related and fully compatible wild relatives.


Subject(s)
Helianthus , Helianthus/genetics , Genome, Plant/genetics , Plant Breeding , Genotype , Genomics
5.
Nat Genet ; 54(3): 227-231, 2022 03.
Article in English | MEDLINE | ID: mdl-35288708

ABSTRACT

The cloning of agronomically important genes from large, complex crop genomes remains challenging. Here we generate a 14.7 gigabase chromosome-scale assembly of the South African bread wheat (Triticum aestivum) cultivar Kariega by combining high-fidelity long reads, optical mapping and chromosome conformation capture. The resulting assembly is an order of magnitude more contiguous than previous wheat assemblies. Kariega shows durable resistance to the devastating fungal stripe rust disease1. We identified the race-specific disease resistance gene Yr27, which encodes an intracellular immune receptor, to be a major contributor to this resistance. Yr27 is allelic to the leaf rust resistance gene Lr13; the Yr27 and Lr13 proteins show 97% sequence identity2,3. Our results demonstrate the feasibility of generating chromosome-scale wheat assemblies to clone genes, and exemplify that highly similar alleles of a single-copy gene can confer resistance to different pathogens, which might provide a basis for engineering Yr27 alleles with multiple recognition specificities in the future.


Subject(s)
Disease Resistance , Triticum , Bread , Cloning, Molecular , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Triticum/genetics , Triticum/microbiology
6.
Plant Genome ; 14(3): e20117, 2021 11.
Article in English | MEDLINE | ID: mdl-34296827

ABSTRACT

The genus Passiflora comprises a large group of plants popularly known as passionfruit, much appreciated for their exotic flowers and edible fruits. The species (∼500) are morphologically variable (e.g., growth habit, size, and color of flowers) and are adapted to distinct tropical ecosystems. In this study, we generated the genome of the wild diploid species Passiflora organensis Gardner by adopting a hybrid assembly approach. Passiflora organensis has a small genome of 259 Mbp and a heterozygosity rate of 81%, consistent with its reproductive system. Most of the genome sequences could be integrated into its chromosomes with cytogenomic markers (satellite DNA) as references. The repeated sequences accounted for 58.55% of the total DNA analyzed, and the Tekay lineage was the prevalent retrotransposon. In total, 25,327 coding genes were predicted. Passiflora organensis retains 5,609 singletons and 15,671 gene families. We focused on the genes potentially involved in the locus determining self-incompatibility and the MADS-box gene family, allowing us to infer expansions and contractions within specific subfamilies. Finally, we recovered the organellar DNA. Structural rearrangements and two mitoviruses, besides relics of other mobile elements, were found in the chloroplast and mt-DNA molecules, respectively. This study presents the first draft genome assembly of a wild Passiflora species, providing a valuable sequence resource for genomic and evolutionary studies on the genus, and support for breeding cropped passionfruit species.


Subject(s)
Passiflora , Diploidy , Ecosystem , Passiflora/genetics , Plant Breeding , Retroelements
7.
Nat Commun ; 12(1): 3956, 2021 06 25.
Article in English | MEDLINE | ID: mdl-34172741

ABSTRACT

Among crop fruit trees, the apricot (Prunus armeniaca) provides an excellent model to study divergence and adaptation processes. Here, we obtain nearly 600 Armeniaca apricot genomes and four high-quality assemblies anchored on genetic maps. Chinese and European apricots form two differentiated gene pools with high genetic diversity, resulting from independent domestication events from distinct wild Central Asian populations, and with subsequent gene flow. A relatively low proportion of the genome is affected by selection. Different genomic regions show footprints of selection in European and Chinese cultivated apricots, despite convergent phenotypic traits, with predicted functions in both groups involved in the perennial life cycle, fruit quality and disease resistance. Selection footprints appear more abundant in European apricots, with a hotspot on chromosome 4, while admixture is more pervasive in Chinese cultivated apricots. Our study provides clues to the biology of selected traits and targets for fruit tree research and breeding.


Subject(s)
Domestication , Genome, Plant/genetics , Prunus armeniaca/genetics , Chromosomes, Plant/genetics , Disease Resistance/genetics , Evolution, Molecular , Fruit/classification , Fruit/genetics , Fruit/growth & development , Gene Flow , Genetic Variation , Life Cycle Stages/genetics , Metagenomics , Phenotype , Phylogeny , Prunus armeniaca/classification , Prunus armeniaca/growth & development , Selection, Genetic
8.
Nat Commun ; 11(1): 4488, 2020 09 08.
Article in English | MEDLINE | ID: mdl-32901040

ABSTRACT

Sustainable food production in the context of climate change necessitates diversification of agriculture and a more efficient utilization of plant genetic resources. Fonio millet (Digitaria exilis) is an orphan African cereal crop with a great potential for dryland agriculture. Here, we establish high-quality genomic resources to facilitate fonio improvement through molecular breeding. These include a chromosome-scale reference assembly and deep re-sequencing of 183 cultivated and wild Digitaria accessions, enabling insights into genetic diversity, population structure, and domestication. Fonio diversity is shaped by climatic, geographic, and ethnolinguistic factors. Two genes associated with seed size and shattering showed signatures of selection. Most known domestication genes from other cereal models however have not experienced strong selection in fonio, providing direct targets to rapidly improve this crop for agriculture in hot and dry environments.


Subject(s)
Digitaria/genetics , Edible Grain/genetics , Africa , Agriculture/methods , Climate Change , Digitaria/classification , Domestication , Edible Grain/classification , Evolution, Molecular , Genetic Variation , Genome, Plant , Molecular Sequence Annotation , Selection, Genetic , Species Specificity
9.
Genome Biol Evol ; 12(10): 1841-1857, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32722748

ABSTRACT

Chloroplast genomes (cpDNA) in angiosperms are usually highly conserved. Although rearrangements have been observed in some lineages, such as Passiflora, the mechanisms that lead to rearrangements are still poorly elucidated. In the present study, we obtained 20 new chloroplast genomes (18 species from the genus Passiflora, and Dilkea retusa and Mitostemma brevifilis from the family Passifloraceae) in order to investigate cpDNA evolutionary history in this group. Passiflora cpDNAs vary in size considerably, with ∼50 kb between shortest and longest. Large inverted repeat (IR) expansions were identified, and at the extreme opposite, the loss of an IR was detected for the first time in Passiflora, a rare event in angiosperms. The loss of an IR region was detected in Passiflora capsularis and Passiflora costaricensis, a species in which occasional biparental chloroplast inheritance has previously been reported. A repertory of rearrangements such as inversions and gene losses were detected, making Passiflora one of the few groups with complex chloroplast genome evolution. We also performed a phylogenomic study based on all the available cp genomes and our analysis implies that there is a need to reconsider the taxonomic classifications of some species in the group.


Subject(s)
DNA, Chloroplast/chemistry , Gene Rearrangement , Genome, Chloroplast , Passiflora/genetics , Phylogeny , Inverted Repeat Sequences , Passiflora/chemistry , Passiflora/classification
10.
Plant Sci ; 290: 110305, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31779917

ABSTRACT

Resequencing in resistant cultivar 'Nure' and structural comparison with the same region of susceptible 'Morex' was performed in order to gain a better insight into barley Frost-resistance-H2 locus. Accurate annotation showed copy number variation (CNV) in the proximal part of the locus. In 'Nure', two exact copies of the HvCBF4-HvCBF2A region and one of the HvCBF4-HvCBF2B segment were observed, while in 'Morex' the corresponding region harboured a single HvCBF4-HvCBF2A (22 kb) segment. Abundance and diversity of repetitive element classes, gene function gain/losses, regulatory motifs and SNPs in gene sequences were identified. An expression study of key HvCBFs with/without CNV on selected genotypes contrasting for frost resistance and estimated HvCBF4-HvCBF2B copy number (2-10 copies) was also performed. Under light stimulus at warm temperature (23 °C), CNV of HvCBF2A and HvCBF4 correlated with their expression levels and reported frost resistance of genotypes; moreover, expression levels of HvCBF2A and HvCBF14 were strongly correlated (r = 0.908, p < 0.01). On the other hand, frost resistance correlated to HvCBF14 expression (r = 0.871, p < 0.01) only after cold induction (6°C) in the dark. A complex interplay of HvCBFs expression levels under different light/temperature stimuli is discussed in light of CNV and presence/number of regulatory elements that integrate different signal transduction pathways.


Subject(s)
DNA Copy Number Variations/genetics , Gene Expression Regulation, Plant , Genes, Plant , Hordeum/genetics
11.
Nat Plants ; 5(12): 1211-1215, 2019 12.
Article in English | MEDLINE | ID: mdl-31819219

ABSTRACT

Orobanche cumana (sunflower broomrape) is an obligate parasitic plant that infects sunflower roots, causing yield losses. Here, by using a map-based cloning strategy, we identified HaOr7-a gene that confers resistance to O. cumana race F-which was found to encode a leucine-rich repeat receptor-like kinase. The complete HAOR7 protein is present in resistant lines of sunflower and prevents O. cumana from connecting to the vascular system of sunflower roots, whereas susceptible lines encode a truncated protein that lacks transmembrane and kinase domains.


Subject(s)
Helianthus/parasitology , Orobanche/enzymology , Plant Proteins/immunology , Protein Kinases/immunology , Disease Resistance , Helianthus/growth & development , Orobanche/immunology , Orobanche/metabolism , Plant Proteins/genetics , Protein Kinases/genetics
12.
Genet Sel Evol ; 51(1): 59, 2019 Oct 26.
Article in English | MEDLINE | ID: mdl-31655542

ABSTRACT

BACKGROUND: Ribosomal DNA (rDNA) repeats are situated in the nucleolus organizer regions (NOR) of chromosomes and transcribed into rRNA for ribosome biogenesis. Thus, they are an essential component of eukaryotic genomes. rDNA repeat units consist of rRNA gene clusters that are transcribed into single pre-rRNA molecules, each separated by intergenic spacers (IGS) that contain regulatory elements for rRNA gene cluster transcription. Because of their high repeat content, rDNA sequences are usually absent from genome assemblies. In this work, we used the long-read sequencing technology to describe the chicken IGS and fill the knowledge gap on rDNA sequences of one of the key domesticated animals. METHODS: We used the long-read PacBio RSII technique to sequence the BAC clone WAG137G04 (Wageningen BAC library) known to contain chicken NOR elements and the HGAP workflow software suit to assemble the PacBio RSII reads. Whole-genome sequence contigs homologous to the chicken rDNA repetitive unit were identified based on the Gallus_gallus-5.0 assembly with BLAST. We used the Geneious 9.0.5 and Mega software, maximum likelihood method and Chickspress project for sequence evolution analysis, phylogenetic tree construction and analysis of the raw transcriptome data. RESULTS: Three complete IGS sequences in the White Leghorn chicken genome and one IGS sequence in the red junglefowl contig AADN04001305.1 (Gallus_gallus-5.0) were detected. They had various lengths and contained three groups of tandem repeats (some of them being very GC rich) that form highly organized arrays. Initiation and termination sites of rDNA transcription were located within small and large unique regions (SUR and LUR), respectively. No functionally significant sites were detected within the tandem repeat sequences. CONCLUSIONS: Due to the highly organized GC-rich repeats, the structure of the chicken IGS differs from that of IGS in human, apes, Xenopus or fish rDNA. However, the chicken IGS shares some molecular organization features with that of the turtles, which are other representatives of the Sauropsida clade that includes birds and reptiles. Our current results on the structure of chicken IGS together with the previously reported ribosomal gene cluster sequence provide sufficient data to consider that the complete chicken rDNA sequence is assembled with confidence in terms of molecular DNA organization.


Subject(s)
Chickens/genetics , DNA, Ribosomal Spacer/genetics , DNA, Ribosomal/genetics , Animals , Conserved Sequence , DNA, Ribosomal Spacer/chemistry , Sequence Homology, Nucleic Acid
13.
Nucleic Acids Res ; 47(15): 8050-8060, 2019 09 05.
Article in English | MEDLINE | ID: mdl-31505675

ABSTRACT

Cas9-assisted targeting of DNA fragments in complex genomes is viewed as an essential strategy to obtain high-quality and continuous sequence data. However, the purity of target loci selected by pulsed-field gel electrophoresis (PFGE) has so far been insufficient to assemble the sequence in one contig. Here, we describe the µLAS technology to capture and purify high molecular weight DNA. First, the technology is optimized to perform high sensitivity DNA profiling with a limit of detection of 20 fg/µl for 50 kb fragments and an analytical time of 50 min. Then, µLAS is operated to isolate a 31.5 kb locus cleaved by Cas9 in the genome of the plant Medicago truncatula. Target purification is validated on a Bacterial Artificial Chromosome plasmid, and subsequently carried out in whole genome with µLAS, PFGE or by combining these techniques. PacBio sequencing shows an enrichment factor of the target sequence of 84 with PFGE alone versus 892 by association of PFGE with µLAS. These performances allow us to sequence and assemble one contig of 29 441 bp with 99% sequence identity to the reference sequence.


Subject(s)
CRISPR-Cas Systems , DNA, Plant/genetics , Genome, Plant/genetics , Medicago truncatula/genetics , Sequence Analysis, DNA/methods , Chromosomes, Artificial, Bacterial , Computational Biology/methods , DNA, Plant/isolation & purification , Electrophoresis, Gel, Pulsed-Field/methods , Reproducibility of Results
14.
Nat Plants ; 4(12): 1017-1025, 2018 12.
Article in English | MEDLINE | ID: mdl-30397259

ABSTRACT

Advances in deciphering the functional architecture of eukaryotic genomes have been facilitated by recent breakthroughs in sequencing technologies, enabling a more comprehensive representation of genes and repeat elements in genome sequence assemblies, as well as more sensitive and tissue-specific analyses of gene expression. Here we show that PacBio sequencing has led to a substantially improved genome assembly of Medicago truncatula A17, a legume model species notable for endosymbiosis studies1, and has enabled the identification of genome rearrangements between genotypes at a near-base-pair resolution. Annotation of the new M. truncatula genome sequence has allowed for a thorough analysis of transposable elements and their dynamics, as well as the identification of new players involved in symbiotic nodule development, in particular 1,037 upregulated long non-coding RNAs (lncRNAs). We have also discovered that a substantial proportion (~35% and 38%, respectively) of the genes upregulated in nodules or expressed in the nodule differentiation zone colocalize in genomic clusters (270 and 211, respectively), here termed symbiotic islands. These islands contain numerous expressed lncRNA genes and display differentially both DNA methylation and histone marks. Epigenetic regulations and lncRNAs are therefore attractive candidate elements for the orchestration of symbiotic gene expression in the M. truncatula genome.


Subject(s)
Epigenesis, Genetic , Genome, Plant/genetics , Medicago truncatula/genetics , RNA, Untranslated/genetics , Symbiosis/genetics , DNA Methylation , Gene Expression Regulation, Plant , Genomics , Multigene Family , Plant Proteins/genetics , RNA, Plant/genetics , Root Nodules, Plant/genetics
15.
Sci Rep ; 8(1): 13024, 2018 08 29.
Article in English | MEDLINE | ID: mdl-30158558

ABSTRACT

Passiflora edulis is the most widely cultivated species of passionflowers, cropped mainly for industrialized juice production and fresh fruit consumption. Despite its commercial importance, little is known about the genome structure of P. edulis. To fill in this gap in our knowledge, a genomic library was built, and now completely sequenced over 100 large-inserts. Sequencing data were assembled from long sequence reads, and structural sequence annotation resulted in the prediction of about 1,900 genes, providing data for subsequent functional analysis. The richness of repetitive elements was also evaluated. Microsyntenic regions of P. edulis common to Populus trichocarpa and Manihot esculenta, two related Malpighiales species with available fully sequenced genomes were examined. Overall, gene order was well conserved, with some disruptions of collinearity identified as rearrangements, such as inversion and translocation events. The microsynteny level observed between the P. edulis sequences and the compared genomes is surprising, given the long divergence time that separates them from the common ancestor. P. edulis gene-rich segments are more compact than those of the other two species, even though its genome is much larger. This study provides a first accurate gene set for P. edulis, opening the way for new studies on the evolutionary issues in Malpighiales genomes.


Subject(s)
Gene Order , Genome, Plant , Passiflora/genetics , Synteny , Gene Library , Manihot/genetics , Populus/genetics , Sequence Analysis, DNA
16.
Mol Biol Evol ; 34(7): 1722-1729, 2017 07 01.
Article in English | MEDLINE | ID: mdl-28379502

ABSTRACT

The composition and structure of fleece variation observed in mammals is a consequence of a strong selective pressure for fiber production after domestication. In sheep, fleece variation discriminates ancestral species carrying a long and hairy fleece from modern domestic sheep (Ovis aries) owning a short and woolly fleece. Here, we report that the "woolly" allele results from the insertion of an antisense EIF2S2 retrogene (called asEIF2S2) into the 3' UTR of the IRF2BP2 gene leading to an abnormal IRF2BP2 transcript. We provide evidence that this chimeric IRF2BP2/asEIF2S2 messenger 1) targets the genuine sense EIF2S2 RNA and 2) creates a long endogenous double-stranded RNA which alters the expression of both EIF2S2 and IRF2BP2 mRNA. This represents a unique example of a phenotype arising via a RNA-RNA hybrid, itself generated through a retroposition mechanism. Our results bring new insights on the sheep population history thanks to the identification of the molecular origin of an evolutionary phenotypic variation.


Subject(s)
Sheep, Domestic/genetics , Sheep/genetics , Animals , Biological Evolution , Carrier Proteins/genetics , DNA, Ancient , Genetic Variation/genetics , Genome , Genome-Wide Association Study/methods , Mutation , Phenotype , Transcription Factors/genetics , Wool
17.
Front Plant Sci ; 8: 334, 2017.
Article in English | MEDLINE | ID: mdl-28344587

ABSTRACT

The family Passifloraceae consists of some 700 species classified in around 16 genera. Almost all its members belong to the genus Passiflora. In Brazil, the yellow passion fruit (Passiflora edulis) is of considerable economic importance, both for juice production and consumption as fresh fruit. The availability of chloroplast genomes (cp genomes) and their sequence comparisons has led to a better understanding of the evolutionary relationships within plant taxa. In this study, we obtained the complete nucleotide sequence of the P. edulis chloroplast genome, the first entirely sequenced in the Passifloraceae family. We determined its structure and organization, and also performed phylogenomic studies on the order Malpighiales and the Fabids clade. The P. edulis chloroplast genome is characterized by the presence of two copies of an inverted repeat sequence (IRA and IRB) of 26,154 bp, each separating a small single copy region of 13,378 bp and a large single copy (LSC) region of 85,720 bp. The annotation resulted in the identification of 105 unique genes, including 30 tRNAs, 4 rRNAs, and 71 protein coding genes. Also, 36 repetitive elements and 85 SSRs (microsatellites) were identified. The structure of the complete cp genome of P. edulis differs from that of other species because of rearrangement events detected by means of a comparison based on 22 members of the Malpighiales. The rearrangements were three inversions of 46,151, 3,765 and 1,631 bp, located in the LSC region. Phylogenomic analysis resulted in strongly supported trees, but this could also be a consequence of the limited taxonomic sampling used. Our results have provided a better understanding of the evolutionary relationships in the Malpighiales and the Fabids, confirming the potential of complete chloroplast genome sequences in inferring evolutionary relationships and the utility of long sequence reads for generating very accurate biological information.

SELECTION OF CITATIONS
SEARCH DETAIL
...