Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Philos Trans R Soc Lond B Biol Sci ; 376(1825): 20200157, 2021 05 24.
Article in English | MEDLINE | ID: mdl-33813885

ABSTRACT

As sequencing becomes more accessible and affordable, the analysis of genomic and transcriptomic data has become a cornerstone of many research initiatives. Communities with a focus on particular taxa or ecosystems need solutions capable of aggregating genomic resources and serving them in a standardized and analysis-friendly manner. Taxon-focussed resources can be more flexible in addressing the needs of a research community than can universal or general databases. Here, we present MolluscDB, a genome and transcriptome database for molluscs. MolluscDB offers a rich ecosystem of tools, including an Ensembl browser, a BLAST server for homology searches and an HTTP server from which any dataset present in the database can be downloaded. To demonstrate the utility of the database and verify the quality of its data, we imported data from assembled genomes and transcriptomes of 22 species, estimated the phylogeny of Mollusca using single-copy orthologues, explored patterns of gene family size change and interrogated the data for biomineralization-associated enzymes and shell matrix proteins. MolluscDB provides an easy-to-use and openly accessible data resource for the research community. This article is part of the Theo Murphy meeting issue 'Molluscan genomics: broad insights and future directions for a neglected phylum'.


Subject(s)
Databases, Genetic , Genome , Mollusca/genetics , Transcriptome , Animals , Gene Expression Profiling , Genomics
2.
Biol Rev Camb Philos Soc ; 95(6): 1812-1837, 2020 12.
Article in English | MEDLINE | ID: mdl-32737956

ABSTRACT

Most molluscs possess shells, constructed from a vast array of microstructures and architectures. The fully formed shell is composed of calcite or aragonite. These CaCO3 crystals form complex biocomposites with proteins, which although typically less than 5% of total shell mass, play significant roles in determining shell microstructure. Despite much research effort, large knowledge gaps remain in how molluscs construct and maintain their shells, and how they produce such a great diversity of forms. Here we synthesize results on how shell shape, microstructure, composition and organic content vary among, and within, species in response to numerous biotic and abiotic factors. At the local level, temperature, food supply and predation cues significantly affect shell morphology, whilst salinity has a much stronger influence across latitudes. Moreover, we emphasize how advances in genomic technologies [e.g. restriction site-associated DNA sequencing (RAD-Seq) and epigenetics] allow detailed examinations of whether morphological changes result from phenotypic plasticity or genetic adaptation, or a combination of these. RAD-Seq has already identified single nucleotide polymorphisms associated with temperature and aquaculture practices, whilst epigenetic processes have been shown significantly to modify shell construction to local conditions in, for example, Antarctica and New Zealand. We also synthesize results on the costs of shell construction and explore how these affect energetic trade-offs in animal metabolism. The cellular costs are still debated, with CaCO3 precipitation estimates ranging from 1-2 J/mg to 17-55 J/mg depending on experimental and environmental conditions. However, organic components are more expensive (~29 J/mg) and recent data indicate transmembrane calcium ion transporters can involve considerable costs. This review emphasizes the role that molecular analyses have played in demonstrating multiple evolutionary origins of biomineralization genes. Although these are characterized by lineage-specific proteins and unique combinations of co-opted genes, a small set of protein domains have been identified as a conserved biomineralization tool box. We further highlight the use of sequence data sets in providing candidate genes for in situ localization and protein function studies. The former has elucidated gene expression modularity in mantle tissue, improving understanding of the diversity of shell morphology synthesis. RNA interference (RNAi) and clustered regularly interspersed short palindromic repeats - CRISPR-associated protein 9 (CRISPR-Cas9) experiments have provided proof of concept for use in the functional investigation of mollusc gene sequences, showing for example that Pif (aragonite-binding) protein plays a significant role in structured nacre crystal growth and that the Lsdia1 gene sets shell chirality in Lymnaea stagnalis. Much research has focused on the impacts of ocean acidification on molluscs. Initial studies were predominantly pessimistic for future molluscan biodiversity. However, more sophisticated experiments incorporating selective breeding and multiple generations are identifying subtle effects and that variability within mollusc genomes has potential for adaption to future conditions. Furthermore, we highlight recent historical studies based on museum collections that demonstrate a greater resilience of molluscs to climate change compared with experimental data. The future of mollusc research lies not solely with ecological investigations into biodiversity, and this review synthesizes knowledge across disciplines to understand biomineralization. It spans research ranging from evolution and development, through predictions of biodiversity prospects and future-proofing of aquaculture to identifying new biomimetic opportunities and societal benefits from recycling shell products.


Subject(s)
Biomimetics , Seawater , Animals , Aquaculture , Hydrogen-Ion Concentration , Mollusca/genetics
3.
Evol Lett ; 3(2): 217-236, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31007946

ABSTRACT

The nematode Caenorhabditis elegans has been central to the understanding of metazoan biology. However, C. elegans is but one species among millions and the significance of this important model organism will only be fully revealed if it is placed in a rich evolutionary context. Global sampling efforts have led to the discovery of over 50 putative species from the genus Caenorhabditis, many of which await formal species description. Here, we present species descriptions for 10 new Caenorhabditis species. We also present draft genome sequences for nine of these new species, along with a transcriptome assembly for one. We exploit these whole-genome data to reconstruct the Caenorhabditis phylogeny and use this phylogenetic tree to dissect the evolution of morphology in the genus. We reveal extensive variation in genome size and investigate the molecular processes that underlie this variation. We show unexpected complexity in the evolutionary history of key developmental pathway genes. These new species and the associated genomic resources will be essential in our attempts to understand the evolutionary origins of the C. elegans model.

SELECTION OF CITATIONS
SEARCH DETAIL
...