Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Mol Plant ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38835170

ABSTRACT

Mescaline, among the earliest identified natural hallucinogens, holds great potential in psychotherapy treatment. Nonetheless, despite the existence of a postulated biosynthetic pathway for more than half a century, the specific enzymes involved in this process are yet to be identified. Here, we investigated the cactus Lophophora williamsii (Peyote), the largest known natural producer of the phenethylamine mescaline. We employed a multi-faceted approach, combining de novo whole-genome and transcriptome sequencing with comprehensive chemical profiling, enzymatic assays, molecular modeling, and pathway engineering for pathway elucidation. We identified four groups of enzymes governing the six steps towards mescaline, and provided essential insights into several challenges hindering the reconstruction of this pathway in plant and yeast heterologous systems. Furthermore, we discovered an N-methyltransferase enzyme responsible for catalyzing the production of an array of N-methyl-phenethylamines, likely regulating mescaline levels in Peyote. Our findings open up avenues for exploring sustainable production approaches and responsible utilization, safeguarding this valuable natural resource for future generations.

3.
Int J Mol Sci ; 24(9)2023 May 07.
Article in English | MEDLINE | ID: mdl-37176111

ABSTRACT

Renal cell carcinoma (RCC) presents as metastatic disease in one third of cases. Research on circulating tumor cells (CTCs) and liquid biopsies is improving the understanding of RCC biology and metastases formation. However, a standardized, sensitive, specific, and cost-effective CTC detection technique is lacking. The use of platforms solely relying on epithelial markers is inappropriate in RCC due to the frequent epithelial-mesenchymal transition that CTCs undergo. This study aimed to test and clinically validate RUBYchip™, a microfluidic label-free CTC detection platform, in RCC patients. The average CTC capture efficiency of the device was 74.9% in spiking experiments using three different RCC cell lines. Clinical validation was performed in a cohort of 18 patients, eight non-metastatic (M0), five metastatic treatment-naïve (M1TN), and five metastatic progressing-under-treatment (M1TP). An average CTC detection rate of 77.8% was found and the average (range) total CTC count was 6.4 (0-27), 101.8 (0-255), and 3.2 (0-10), and the average mesenchymal CTC count (both single and clustered cells) was zero, 97.6 (0-255), and 0.2 (0-1) for M0, M1TN, and M1TP, respectively. CTC clusters were detected in 25% and 60% of M0 and M1TN patients, respectively. These results show that RUBYchip™ is an effective CTC detection platform in RCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Neoplastic Cells, Circulating , Humans , Neoplastic Cells, Circulating/pathology , Microfluidics , Cell Line , Kidney Neoplasms/pathology , Biomarkers, Tumor/metabolism
4.
Methods Mol Biol ; 2659: 183-191, 2023.
Article in English | MEDLINE | ID: mdl-37249894

ABSTRACT

The apoplast is the plant compartment present between the plasma membrane and the cuticle, comprised of the cell wall and the extracellular spaces where the "secretomes" are released and where the apoplastic fluid circulates. Within the many functions attributed to this compartment, its role in plant-pathogen interactions is irrefutable. It is the major point where plant and pathogen secretomes come in contact and several plant and pathogenic secreted proteins and small molecules present in this compartment are already cataloged in the literature. In plant-pathogen interactions, fatty acids and lipid molecules were shown to play a crucial role in the activation of plant immunity; however, the lipid composition of the apoplast is still a black box. Most of the studies performed to understand apoplast dynamics have used proteomic-based techniques; however, knowledge about apoplastic proteins involved in lipid metabolism and transport is still severely limited. In grapevine, only three studies have been published so far focusing on the characterization of this compartment and only one of them deals with grapevine-pathogen interaction. Here we refer to our recently established method for grapevine leaves' apoplastic fluid isolation and describe a direct methylation protocol for the analysis of apoplastic fluid fatty acids. We also point out a novel intracellular marker that may be used to assess apoplastic fluid purity.


Subject(s)
Fatty Acids , Vitis , Fatty Acids/metabolism , Proteomics , Plant Leaves/metabolism , Extracellular Space/metabolism , Plant Proteins/metabolism , Vitis/metabolism , Plant Diseases
5.
Cancers (Basel) ; 14(24)2022 Dec 14.
Article in English | MEDLINE | ID: mdl-36551666

ABSTRACT

Matrix metalloproteinases (MMPs) are proteolytic enzymes that play a crucial role in tumor microenvironment remodeling, contributing to inflammatory and angiogenic processes, and ultimately promoting tumor maintenance and progression. Several studies on bioactive polypeptides isolated from legumes have shown anti-migratory, anti-MMPs, and anti-tumor effects, potentially constituting novel strategies for both the prevention and progression of cancer. In this work, we investigated the anti-tumor role of deflamin, a protein oligomer isolated from white lupine seeds (Lupinus albus) reported to inhibit MMP-9 and cell migration in colorectal cancer (CRC) cell lines. We found that deflamin exerts an inhibitory effect on tumor growth and metastasis formation, contributing to increased tumor apoptosis in the xenotransplanted zebrafish larvae model. Furthermore, deflamin resulted not only in a significant reduction in MMP-2 and MMP-9 activity but also in impaired cancer cell migration and invasion in vitro. Using the xenograft zebrafish model, we observed that deflamin inhibits collagen degradation and angiogenesis in the tumor microenvironment in vivo. Overall, our work reveals the potential of deflamin as an agent against CRC development and progression.

6.
Foods ; 10(10)2021 Sep 23.
Article in English | MEDLINE | ID: mdl-34681299

ABSTRACT

The domesticated species Vitis vinifera L. harbours many cultivars throughout the world that present distinctive phenology and grape quality. Not only have the grapes been used for human consumption, but the leaves are also used as a source of bioactive compounds and are present in the diets of several Mediterranean countries. We have selected seven different cultivars and performed elemental, fatty acid (FA) and pigment profiling. Total reflection X-ray fluorescence (TXRF) enabled the identification of 21 elements. Among them, Na, Ca and K were highly represented in all the cultivars and Zn was prevalent in V. vinifera cv. 'Pinot noir' and 'Cabernet sauvignon'. Through gas chromatography, six FAs were identified, including omega-3 and omega-6 FA, the most abundant mainly in V. vinifera cv. 'Tinta barroca', 'Pinot noir' and 'Cabernet sauvignon'. FA composition was used to determine nutritional quality parameters, namely atherogenic, thrombogenic, hypocholesterolemic/hypercholesterolemic and peroxidisability indexes as well as oxidability and oxidative susceptibility. Grapevine leaves were highlighted as a suitable source of health-promoting lipids. Given the popularity of "green" diets, we have also performed a leaf pigment analysis. Seventeen pigments including chlorophylls, trans-lutein, b-carotene and zeaxanthins were detected. 'C19' presented the highest content of most of the detected pigments.

7.
Int J Mol Sci ; 22(11)2021 May 22.
Article in English | MEDLINE | ID: mdl-34067363

ABSTRACT

Grapevine downy mildew, caused by the biotrophic oomycete Plasmopara viticola, is one of the most severe and devastating diseases in viticulture. Unravelling the grapevine defence mechanisms is crucial to develop sustainable disease control measures. Here we provide new insights concerning fatty acid's (FA) desaturation, a fundamental process in lipid remodelling and signalling. Previously, we have provided evidence that lipid signalling is essential in the establishment of the incompatible interaction between grapevine and Plasmopara viticola. In the first hours after pathogen challenge, jasmonic acid (JA) accumulation, activation of its biosynthetic pathway and an accumulation of its precursor, the polyunsaturated α-linolenic acid (C18:3), were observed in the leaves of the tolerant genotype, Regent. This work was aimed at a better comprehension of the desaturation processes occurring after inoculation. We characterised, for the first time in Vitis vinifera, the gene family of the FA desaturases and evaluated their involvement in Regent response to Plasmopara viticola. Upon pathogen challenge, an up-regulation of the expression of plastidial FA desaturases genes was observed, resulting in a higher content of polyunsaturated fatty acids (PUFAs) of chloroplast lipids. This study highlights FA desaturases as key players in membrane remodelling and signalling in grapevine defence towards biotrophic pathogens.


Subject(s)
Disease Resistance/genetics , Fatty Acid Desaturases/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Vitis/genetics , Vitis/microbiology , Biosynthetic Pathways/genetics , Chloroplasts/genetics , Cyclopentanes/metabolism , Gene Expression Regulation, Plant/genetics , Genotype , Lipids/genetics , Oomycetes/pathogenicity , Oxylipins/metabolism , Peronospora/pathogenicity , Plant Leaves/genetics , Plant Leaves/microbiology
8.
Plant Physiol Biochem ; 163: 230-238, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33862502

ABSTRACT

Grapevine (Vitis vinifera L.) is prone to fungal and oomycete diseases. Downy and powdery mildews and grey mold, are caused by Plasmopara viticola, Erisiphe necator and Botrytis cinerea, respectively. P. viticola and E. necator are obligatory biotrophs whereas B. cinerea is a necrotroph. In tolerant grapevine cultivars, plant-pathogen interaction induces defence responses, including metabolite and protein accumulation and hypersensitive reaction. Lipid and lipid-derived molecules may have a key role in the activation of defence mechanisms. Previous results suggest that V. vinifera cv Regent tolerance to P. viticola may be mediated in the first hours post inoculation by fatty acid (FA) associated signalling. In the present study we characterized FA modulation in V. vinifera cv Regent leaves upon inoculation with P. viticola, E. necator and B. cinerea and correlated FA modulation with the expression profiles of genes encoding the FA desaturases FAD6 and FAD8. In all the interactions, a progressive desaturation of stearic acid to α-linolenic acid, precursor of jasmonic acid, occurred, which was observed for a longer period against B. cinerea. Our results provide evidence of a distinct FA meditated signalling pattern in grapevine interaction with biotrophs and necrotrophs. While the interaction with the biotrophs may trigger a higher synthesis of polyunsaturated FA (PUFA) at early time-points with a tendency to return to basal levels, the interaction with B. cinerea may trigger a later and more durable induction of PUFA synthesis. In all interactions, membrane fluidity modulation occurred, which may be crucial to maintain cellular function during infection.


Subject(s)
Oomycetes , Vitis , Botrytis , Disease Resistance , Fatty Acids , Gene Expression , Gene Expression Regulation, Plant , Plant Diseases , Vitis/genetics
9.
Cell Mol Life Sci ; 78(9): 4399-4415, 2021 May.
Article in English | MEDLINE | ID: mdl-33638652

ABSTRACT

Lipids and fatty acids play crucial roles in plant immunity, which have been highlighted over the past few decades. An increasing number of studies have shown that these molecules are pivotal in the interactions between plants and their diverse pathogens. The roles played by plant lipids fit in a wide spectrum ranging from the first physical barrier encountered by the pathogens, the cuticle, to the signalling pathways that trigger different immune responses and expression of defence-related genes, mediated by several lipid molecules. Moreover, lipids have been arising as candidate biomarkers of resistance or susceptibility to different pathogens. Studies on the apoplast and extracellular vesicles have been highlighting the possible role of lipids in the intercellular communication and the establishment of systemic acquired resistance during plant-pathogen interactions. From the pathogen perspective, lipid metabolism and specific lipid molecules play pivotal roles in the pathogen's life cycle completion, being crucial during recognition by the plant and evasion from the host immune system, therefore potentiating infection. Studies conducted in the last years have contributed to a better understanding of the language of lipids during the cross-talk between plants and pathogens. However, it is essential to continue exploring the knowledge brought up to light by transcriptomics and proteomics studies towards the elucidation of lipid signalling processes during defence and disease. In this review, we present an updated overview on lipids associated to plant-pathogen interactions, exploiting their roles from the two sides of this battle.


Subject(s)
Host-Pathogen Interactions , Lipid Metabolism/physiology , Plants/metabolism , Biomarkers/metabolism , Disease Resistance , Extracellular Vesicles/metabolism , Fatty Acids/metabolism , Plant Diseases/genetics , Plant Diseases/microbiology , Plant Immunity , Signal Transduction
10.
Physiol Plant ; 171(3): 343-357, 2021 Mar.
Article in English | MEDLINE | ID: mdl-32860657

ABSTRACT

The analysis of complex biological systems keeps challenging researchers. The main goal of systems biology is to decipher interactions within cells, by integrating datasets from large scale analytical approaches including transcriptomics, proteomics and metabolomics and more specialized 'OMICS' such as epigenomics and lipidomics. Studying different cellular compartments allows a broader understanding of cell dynamics. Plant apoplast, the cellular compartment external to the plasma membrane including the cell wall, is particularly demanding to analyze. Despite our knowledge on apoplast involvement on several processes from cell growth to stress responses, its dynamics is still poorly known due to the lack of efficient extraction processes adequate to each plant system. Analyzing woody plants such as grapevine raises even more challenges. Grapevine is among the most important fruit crops worldwide and a wider characterization of its apoplast is essential for a deeper understanding of its physiology and cellular mechanisms. Here, we describe, for the first time, a vacuum-infiltration-centrifugation method that allows a simultaneous extraction of grapevine apoplastic proteins and metabolites from leaves on a single sample, compatible with high-throughput mass spectrometry analyses. The extracted apoplast from two grapevine cultivars, Vitis vinifera cv 'Trincadeira' and 'Regent', was directly used for proteomics and metabolomics analysis. The proteome was analyzed by nanoLC-MS/MS and more than 700 common proteins were identified, with highly diverse biological functions. The metabolome profile through FT-ICR-MS allowed the identification of 514 unique putative compounds revealing a broad spectrum of molecular classes.


Subject(s)
Proteome , Vitis , Metabolome , Plant Leaves/metabolism , Proteome/metabolism , Tandem Mass Spectrometry , Vitis/genetics , Vitis/metabolism
11.
Int J Mol Sci ; 21(18)2020 Sep 07.
Article in English | MEDLINE | ID: mdl-32906775

ABSTRACT

Platelets play a crucial role in the immunological response and are involved in the pathological settings of vascular diseases, and their adhesion to the extracellular matrix is important to bring leukocytes close to the endothelial cells and to form and stabilize the thrombus. Currently there are several methods to study platelet adhesion; however, the optimal parameters to perform the assay vary among studies, which hinders their comparison and reproducibility. Here, a standardization and validation of a fluorescence-based quantitative adhesion assay to study platelet-ECM interaction in a high-throughput screening format is proposed. Our study confirms that fluorescence-based quantitative assays can be effectively used to detect platelet adhesion, in which BCECF-AM presents the highest sensitivity in comparison to other dyes.


Subject(s)
Optical Imaging/methods , Platelet Adhesiveness/physiology , Blood Platelets/physiology , Endothelial Cells , Endothelium, Vascular , Extracellular Matrix/physiology , Fluorescence , Humans , Optical Imaging/standards , Platelet Activation , Reference Standards , Reproducibility of Results , Thrombosis
12.
Cancers (Basel) ; 12(8)2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32752204

ABSTRACT

Cadherins mediate cohesive contacts between isotypic cells by homophilic interaction and prevent contact between heterotypic cells. Breast cancer cells neighboring endothelial cells (ECs) atypically express vascular endothelial (VE)-cadherin. To understand this EC-induced VE-cadherin expression in breast cancer cells, MCF7 and MDA-MB-231 cells expressing different endogenous cadherins were co-cultured with ECs and analyzed for VE-cadherin at the transcriptional level and by confocal microscopy, flow cytometry, and immunoblotting. After losing their endogenous cadherins and neo-expression of VE-cadherin, these cells integrated into an EC monolayer without compromising the barrier function instantly. However, they induced the death of nearby ECs. EC-derived extracellular vesicles (EVs) contained soluble and membrane-anchored forms of VE-cadherin. Only the latter was re-utilized by the cancer cells. In a reporter gene assay, EC-adjacent cancer cells also showed a juxtacrine but no paracrine activation of the endogenous VE-cadherin gene. This cadherin switch enabled intimate contact between cancer and endothelial cells in a chicken chorioallantoic membrane tumor model showing vasculogenic mimicry (VM). This EV-mediated, EC-induced cadherin switch in breast cancer cells and the neo-expression of VE-cadherin mechanistically explain the mutual communication in the tumor microenvironment. Hence, it may be a target to tackle VM, which is often found in breast cancers of poor prognosis.

13.
Cancer Metastasis Rev ; 39(3): 603-623, 2020 09.
Article in English | MEDLINE | ID: mdl-32447477

ABSTRACT

Progression through dissemination to tumor-surrounding tissues and metastasis development is a hallmark of cancer that requires continuous cell-to-cell interactions and tissue remodeling. In fact, metastization can be regarded as a tissue disease orchestrated by cancer cells, leading to neoplastic colonization of new organs. Collagen is a major component of the extracellular matrix (ECM), and increasing evidence suggests that it has an important role in cancer progression and metastasis. Desmoplasia and collagen biomarkers have been associated with relapse and death in cancer patients. Despite the increasing interest in ECM and in the desmoplastic process in tumor microenvironment as prognostic factors and therapeutic targets in cancer, further research is required for a better understanding of these aspects of cancer biology. In this review, published evidence correlating collagen with cancer prognosis is retrieved and analyzed, and the role of collagen and its fragments in cancer pathophysiology is discussed.


Subject(s)
Collagen/metabolism , Neoplasms/metabolism , Neoplasms/pathology , Animals , Disease Progression , Humans , Neoplasm Metastasis
14.
Sensors (Basel) ; 19(23)2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31779085

ABSTRACT

In this paper we report a method to determine the soluble solids content (SSC) of 'Rocha' pear (Pyrus communis L. cv. Rocha) based on their short-wave NIR reflectance spectra (500-1100 nm) measured in conditions similar to those found in packinghouse fruit sorting facilities. We obtained 3300 reflectance spectra from pears acquired from different lots, producers and with diverse storage times and ripening stages. The macroscopic properties of the pears, such as size, temperature and SSC were measured under controlled laboratory conditions. For the spectral analysis, we implemented a computational pipeline that incorporates multiple pre-processing techniques including a feature selection procedure, various multivariate regression models and three different validation strategies. This benchmark allowed us to find the best model/preproccesing procedure for SSC prediction from our data. From the several calibration models tested, we have found that Support Vector Machines provides the best predictions metrics with an RMSEP of around 0.82 ∘ Brix and 1.09 ∘ Brix for internal and external validation strategies respectively. The latter validation was implemented to assess the prediction accuracy of this calibration method under more 'real world-like' conditions. We also show that incorporating information about the fruit temperature and size to the calibration models improves SSC predictability. Our results indicate that the methodology presented here could be implemented in existing packinghouse facilities for single fruit SSC characterization.

15.
Molecules ; 24(19)2019 Sep 26.
Article in English | MEDLINE | ID: mdl-31561469

ABSTRACT

Atroxlysin-III (Atr-III) was purified from the venom of Bothrops atrox. This 56-kDa protein bears N-linked glycoconjugates and is a P-III hemorrhagic metalloproteinase. Its cDNA-deduced amino acid sequence reveals a multidomain structure including a proprotein, a metalloproteinase, a disintegrin-like and a cysteine-rich domain. Its identity with bothropasin and jararhagin from Bothrops jararaca is 97% and 95%, respectively. Its enzymatic activity is metal ion-dependent. The divalent cations, Mg2+ and Ca2+, enhance its activity, whereas excess Zn2+ inhibits it. Chemical modification of the Zn2+-complexing histidine residues within the active site by using diethylpyrocarbonate (DEPC) inactivates it. Atr-III degrades plasma fibronectin, type I-collagen, and mainly the α-chains of fibrinogen and fibrin. The von Willebrand factor (vWF) A1-domain, which harbors the binding site for GPIb, is not hydrolyzed. Platelets interact with collagen via receptors for collagen, glycoprotein VI (GPVI), and α2ß1 integrin. Neither the α2ß1 integrin nor its collagen-binding A-domain is fragmented by Atr-III. In contrast, Atr-III cleaves glycoprotein VI (GPVI) into a soluble ~55-kDa fragment (sGPVI). Thereby, it inhibits aggregation of platelets which had been stimulated by convulxin, a GPVI agonist. Selectively, Atr-III targets GPVI antagonistically and thus contributes to the antithrombotic effect of envenomation by Bothrops atrox.


Subject(s)
Blood Platelets/drug effects , Blood Platelets/metabolism , Crotalid Venoms/enzymology , Crotalinae , Metalloproteases/pharmacology , Platelet Membrane Glycoproteins/biosynthesis , Amino Acid Sequence , Animals , Crotalinae/metabolism , Extracellular Matrix , Metalloproteases/chemistry , Metalloproteases/genetics , Metalloproteases/isolation & purification , Models, Molecular , Phylogeny , Platelet Membrane Glycoproteins/antagonists & inhibitors , Platelet Membrane Glycoproteins/chemistry , Protein Conformation , Proteolysis , Structure-Activity Relationship
16.
Thromb Haemost ; 119(11): 1720-1739, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31564053

ABSTRACT

Despite significant advances in the treatment of thrombogenic diseases, antiplatelet therapies are still associated with a high bleeding risk. Consequently, potential benefits of preventing thromboembolic events by pharmacological agents need to be balanced with the potential harm of inducing hemorrhage. Glycoprotein VI (GPVI) is a platelet-specific receptor, which plays a crucial role in thrombus formation. GPVI deficiency has been identified in patients who suffer from significant reduction of collagen-induced thrombus formation, with a slight tendency for mild bleeding. However, an isolated GPVI deficiency can reduce thrombus formation while not resulting in severe bleeding. Together, these observations strongly suggest that physiological hemostasis does not require GPVI, but pharmacological GPVI modulation may provide novel "bleeding-free" antithrombotic therapies. In this review, we discuss recent findings regarding the biological role of GPVI in platelet-related disorders and highlight the efforts to develop potential therapeutic strategies based on its structure, signaling pathways, and biological effects.


Subject(s)
Blood Platelets/drug effects , Fibrinolytic Agents/therapeutic use , Hemostasis/drug effects , Platelet Aggregation Inhibitors/therapeutic use , Platelet Membrane Glycoproteins/antagonists & inhibitors , Thrombosis/drug therapy , Animals , Blood Platelets/metabolism , Fibrinolytic Agents/adverse effects , Hemorrhage/chemically induced , Humans , Platelet Aggregation Inhibitors/adverse effects , Platelet Membrane Glycoproteins/metabolism , Risk Assessment , Signal Transduction , Thrombosis/blood , Treatment Outcome
17.
J Vis Exp ; (150)2019 08 08.
Article in English | MEDLINE | ID: mdl-31449247

ABSTRACT

Defining the ideal model for an in vitro study is essential, mainly if studying physiological processes such as differentiation of cells. In the tumor stroma, host fibroblasts are stimulated by cancer cells to differentiate. Thus, they acquire a phenotype that contributes to the tumor microenvironment and supports tumor progression. By using the spheroid model, we have set up such a 3D in vitro model system, in which we analyzed the role of laminin-332 and its receptor integrin α3ß1 in this differentiation process. This spheroid model system not only reproduces the tumor microenvironment conditions in a more accurate way, but also is a very versatile model since it allows different downstream studies, such as immunofluorescent staining of both intra- and extracellular markers, as well as deposited extracellular matrix proteins. Moreover, transcriptional analyses by qPCR, flow cytometry and cellular invasion can be studied with this model. Here, we describe a protocol of a spheroid model to assess the role of CAFs' integrin α3ß1 and its ectopically deposited ligand, laminin-332, in differentiation and in supporting the invasion of pancreatic cancer cells.


Subject(s)
Cancer-Associated Fibroblasts/metabolism , Imaging, Three-Dimensional/methods , In Vitro Techniques/methods , Cell Differentiation , Humans , Neoplasm Invasiveness , Spheroids, Cellular
18.
Sci Rep ; 9(1): 6731, 2019 Apr 25.
Article in English | MEDLINE | ID: mdl-31019195

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

19.
J Immunol ; 202(5): 1559-1572, 2019 03 01.
Article in English | MEDLINE | ID: mdl-30692210

ABSTRACT

The neuropilin-1 (NRP1)-MET signaling axis regulates the motility of individual endothelial cells (ECs). It is unknown how this signaling pathway affects the endothelial barrier in coherent ECs forming a tight monolayer. We hypothesized that it is involved both in modulation of the endothelial barrier and in EC activation. To investigate the role of NRP1-MET signaling in inflammatory processes (e.g., systemic inflammatory response syndrome [SIRS] or snakebite-induced SIRS-like conditions), we employed the C-type lectin-related protein rhodocetin-αß (RCαß) as a specific trigger of this signal axis in ECs in vitro. In coherent HUVECs, RCαß reinforced the actin cytoskeleton and increased cell stiffness, thus favoring vascular endothelial cadherin-mediated transmission of intercellular forces. Increased cell stiffness was associated with enhanced activation of RhoA and nuclear translocation of NF-κB. Simultaneously, RCαß-triggered signaling via the NRP1-MET axis increased EC monolayer permeability, induced transcription of proinflammatory genes such as ICAM-1 and, consequently, leukocyte tethering. The RCαß-induced transcriptome differed from that induced by hepatocyte growth factor, although in both cases the same tyrosine kinase, MET, was involved. This was due to RCαß-mediated recruitment of the MET coreceptor NRP1 and additional Rho-mediated activation of the actomyosin system. RCαß induced similar transcriptional and cellular changes if external shear forces were applied. These data highlight the modulatory role of NRP1 as MET coreceptor, and they explain how some snake venoms induce SIRS-like conditions. Additionally, this study demonstrates that inflammatory activation of coherent ECs is triggered by converging signals that are induced by NRP1-MET signaling and influenced by intercellular forces.


Subject(s)
Human Umbilical Vein Endothelial Cells/immunology , Inflammation/immunology , Neuropilin-1/immunology , Proto-Oncogene Proteins c-met/immunology , Signal Transduction/immunology , Cells, Cultured , Humans
20.
Cancers (Basel) ; 11(1)2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30583482

ABSTRACT

Ranking among the most lethal tumour entities, pancreatic duct adenocarcinoma cells invade neighbouring tissue resulting in high incidence of metastasis. They are supported by tumour stroma fibroblasts which have undergone differentiation into cancer-associated fibroblasts (CAFs). Stiffness of cell substratum, cytokines, such as transforming growth factor-ß (TGF-ß), and stromal matrix proteins, such as laminin-332, are factors which promote CAF differentiation. In a spheroid culture system, differentiation of CAFs was analysed for laminin-332 production, laminin-binding integrin repertoire, adhesion and migration behaviour, and, in heterospheroids, for their interplay with the pancreatic duct adenocarcinoma AsPC-I cells. Our data reveal that CAFs produce laminin-332 thus contributing to its ectopic deposition within the tumour stroma. Moreover, CAF differentiation correlates with an increased expression of α3ß1 integrin, the principal laminin-332-receptor. Beyond its role as novel CAF marker protein, integrin α3ß1 crucially determines differentiation and maintenance of the CAF phenotype, as knock-out of the integrin α3 subunit reversed the CAF differentiated state. AsPC-I cells co-cultured in heterospheroids with integrin α3-deficient CAFs invaded less than from heterospheroids with wild-type CAFs. This study highlights the role of integrin α3ß1 integrin-laminin-332 interaction of CAFs which promotes and sustains differentiation of CAFs and promotes carcinoma invasion.

SELECTION OF CITATIONS
SEARCH DETAIL
...