Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 137
Filter
1.
J Biol Chem ; 300(1): 105506, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38029965

ABSTRACT

Endotoxins, also known as lipopolysaccharides (LPS), are essential components of cell walls of diderm bacteria such as Escherichia coli. LPS are microbe-associated molecular patterns that can activate pattern recognition receptors. While trying to investigate the interactions between proteins and host innate immunity, some studies using recombinant proteins expressed in E. coli reported interaction and activation of immune cells. Here, we set out to provide information on endotoxins that are highly toxic to humans and bind to numerous molecules, including recombinant proteins. We begin by outlining the history of the discovery of endotoxins, their receptors and the associated signaling pathways that confer extreme sensitivity to immune cells, acting alone or in synergy with other microbe-associated molecular patterns. We list the various places where endotoxins have been found. Additionally, we warn against the risk of data misinterpretation due to endotoxin contamination in recombinant proteins, which is difficult to estimate with the Limulus amebocyte lysate assay, and cannot be completely neutralized (e.g., treatment with polymyxin B or heating). We further illustrate our point with examples of recombinant heat-shock proteins and viral proteins from severe acute respiratory syndrome coronavirus 2, dengue and HIV, for which endotoxin contamination has eventually been shown to be responsible for the inflammatory roles previously ascribed. We also critically appraised studies on recombinant Leptospira proteins regarding their putative inflammatory roles. Finally, to avoid these issues, we propose alternatives to express recombinant proteins in nonmicrobial systems. Microbiologists wishing to undertake innate immunity studies with their favorite pathogens should be aware of these difficulties.


Subject(s)
Immunity, Innate , Leptospira , Lipopolysaccharides , Recombinant Proteins , Humans , Escherichia coli/genetics , Lipopolysaccharides/toxicity , Recombinant Proteins/metabolism , Leptospira/metabolism
2.
Lancet Respir Med ; 12(4): 305-322, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38142698

ABSTRACT

Sepsis is characterised by a dysregulated host immune response to infection. Despite recognition of its significance, immune status monitoring is not implemented in clinical practice due in part to the current absence of direct therapeutic implications. Technological advances in immunological profiling could enhance our understanding of immune dysregulation and facilitate integration into clinical practice. In this Review, we provide an overview of the current state of immune profiling in sepsis, including its use, current challenges, and opportunities for progress. We highlight the important role of immunological biomarkers in facilitating predictive enrichment in current and future treatment scenarios. We propose that multiple immune and non-immune-related parameters, including clinical and microbiological data, be integrated into diagnostic and predictive combitypes, with the aid of machine learning and artificial intelligence techniques. These combitypes could form the basis of workable algorithms to guide clinical decisions that make precision medicine in sepsis a reality and improve patient outcomes.


Subject(s)
Precision Medicine , Sepsis , Humans , Precision Medicine/methods , Artificial Intelligence , Goals , Algorithms , Sepsis/diagnosis , Sepsis/therapy
3.
Clin Rev Allergy Immunol ; 65(2): 183-187, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37395985

ABSTRACT

The most severe forms of COVID-19 share many features with bacterial sepsis and have thus been considered to be a viral sepsis. Innate immunity and inflammation are closely linked. While the immune response aims to get rid of the infectious agent, the pro-inflammatory host response can result in organ injury including acute respiratory distress syndrome. On its side, a compensatory anti-inflammatory response, aimed to dampen the inflammatory reaction, can lead to immunosuppression. Whether these two key events of the host inflammatory response are consecutive or concomitant has been regularly depicted in schemes. Initially proposed from 2001 to 2013 to be two consecutive steps, the concomitant occurrence has been supported since 2013, although it was proposed for the first time in 2001. Despite a consensus was reached, the two consecutive steps were still recently proposed for COVID-19. We discuss why the concomitance view could have been initiated as early as 1995.

4.
Shock ; 59(3S Suppl 1): 10-15, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36469709

ABSTRACT

ABSTRACT: The COVID-19 pandemic has been a challenge to propose efficient therapies. Because severe SARS-CoV2 infection is a viral sepsis eventually followed by an immunological autoinflammatory phenomenon, many approaches have been inspired by the previous attempts made in bacterial sepsis, while specific antiviral strategies (use of interferon or specific drugs) have been additionally investigated. We summarize our current thinking on the use of SARS-CoV-2 antivirals, corticosteroids, anti-IL-1, anti-IL-6, anti-C5a, as well as stem cell therapy in severe COVID-19. Patient stratification and appropriate time window will be important to be defined to guide successful treatment.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Pandemics , RNA, Viral
5.
Toxins (Basel) ; 14(11)2022 11 03.
Article in English | MEDLINE | ID: mdl-36356009

ABSTRACT

We review some of the precursor works of the Pasteurians in the field of bacterial toxins. The word "toxin" was coined in 1888 by Ludwig Brieger to qualify different types of poison released by bacteria. Pasteur had identified the bacteria as the cause of putrefaction but never used the word toxin. In 1888, Émile Roux and Alexandre Yersin were the first to demonstrate that the bacteria causing diphtheria was releasing a deadly toxin. In 1923, Gaston Ramon treated that toxin with formalin and heat, resulting in the concept of "anatoxin" as a mean of vaccination. A similar approach was performed to obtain the tetanus anatoxin by Pierre Descombey, Christian Zoeller and G. Ramon. On his side, Elie Metchnikoff also studied the tetanus toxin and investigated the cholera toxin. His colleague from Odessa, Nikolaï GamaleÏa who was expected to join Institut Pasteur, wrote the first book on bacterial poisons while other Pasteurians such as Etienne Burnet, Maurice Nicolle, Emile Césari, and Constant Jouan wrote books on toxins. Concerning the endotoxins, Alexandre Besredka obtained the first immune antiserum against lipopolysaccharide, and André Boivin characterized the biochemical nature of the endotoxins in a work initiated with Lydia Mesrobeanu in Bucharest.


Subject(s)
Poisons , Tetanus , Humans , Endotoxins , Tetanus Toxin , Bacteria
6.
PLoS One ; 17(10): e0267517, 2022.
Article in English | MEDLINE | ID: mdl-36301921

ABSTRACT

BACKGROUND: Although sepsis is a life-threatening condition, its heterogeneous presentation likely explains the negative results of most trials on adjunctive therapy. This study in patients with sepsis aimed to identify subgroups with similar immune profiles and their clinical and outcome correlates. METHODS: A secondary analysis used data of a prospective multicenter cohort that included patients with early assessment of sepsis. They were described using Predisposition, Insult, Response, Organ failure sepsis (PIRO) staging system. Thirty-eight circulating biomarkers (27 proteins, 11 mRNAs) were assessed at sepsis diagnosis, and their patterns were determined through principal component analysis (PCA). Hierarchical clustering was used to group the patients and k-means algorithm was applied to assess the internal validity of the clusters. RESULTS: Two hundred and three patients were assessed, of median age 64.5 [52.0-77.0] years and SAPS2 score 55 [49-61] points. Five main patterns of biomarkers and six clusters of patients (including 42%, 21%, 17%, 9%, 5% and 5% of the patients) were evidenced. Clusters were distinguished according to the certainty of the causal infection, inflammation, use of organ support, pro- and anti-inflammatory activity, and adaptive profile markers. CONCLUSIONS: In this cohort of patients with suspected sepsis, we individualized clusters which may be described with criteria used to stage sepsis. As these clusters are based on the patterns of circulating biomarkers, whether they might help to predict treatment responsiveness should be addressed in further studies. TRIAL REGISTRATION: The CAPTAIN study was registered on clinicaltrials.gov on June 22, 2011, # NCT01378169.


Subject(s)
Sepsis , Humans , Middle Aged , Prospective Studies , Sepsis/diagnosis , Sepsis/therapy , Biomarkers , Cluster Analysis , Cohort Studies , Intensive Care Units
7.
Biomolecules ; 12(4)2022 04 18.
Article in English | MEDLINE | ID: mdl-35454184

ABSTRACT

Louis Pasteur is the most internationally known French scientist. He discovered molecular chirality, and he contributed to the understanding of the process of fermentation, helping brewers and winemakers to improve their beverages. He proposed a process, known as pasteurization, for the sterilization of wines. He established the germ theory of infectious diseases that allowed Joseph Lister to develop his antiseptic practice in surgery. He solved the problem of silkworm disease, although he had refuted the idea of Antoine Béchamp, who first considered it was a microbial infection. He created four vaccines (fowl cholera, anthrax, pig erysipelas, and rabies) in the paths of his precursors, Henri Toussaint (anthrax vaccine) and Pierre Victor Galtier (rabies vaccine). He generalized the word "vaccination" coined by Richard Dunning, Edward Jenner's friend. Robert Koch, his most famous opponent, pointed out the great ambiguity of Pasteur's approach to preparing his vaccines. Analysis of his laboratory notebooks has allowed historians to discern the differences between the legend built by his hagiographers and reality. In this review, we revisit his career, his undeniable achievements, and tell the truth about a hero who made every effort to build his own fame.


Subject(s)
Vaccines , Wine , Animals , Fermentation , Swine , Vaccination
8.
Innate Immun ; 28(2): 57-66, 2022 02.
Article in English | MEDLINE | ID: mdl-35040340

ABSTRACT

Revisiting Metchnikoff's work in light of the COVID-19 pandemic illustrates how much this amazing scientist was a polymath, and one could speculate how much he would have been fascinated and most interested in following the course of the pandemic. Since he coined the word "gerontology", he would have been intrigued by the high mortality among the elderly, and by the concepts of immunosenescence and inflammaging that characterize the SARS-CoV-2 infection. While Metchnikoff's work is mainly associated with the discovery of the phagocytes and the birth of cellular innate immunity, he regularly invited his closest collaborators to investigate humoral immunity, and it was in his laboratory that Jules Bordet made his major discovery of the complement system. While Metchnikoff and his team investigated many infectious diseases, he also contributed to studies linked to vaccination, such as those on typhoid fever performed in chimpanzees, illustrating that non-human primates can provide animal models which are potentially helpful for understanding the pathophysiology of the COVID-19 virus. In the present review, we illustrate how much his own work and the investigations of his trainees were pertinent to this new disease.


Subject(s)
COVID-19 , Aged , Animals , Humans , Immunity, Cellular , Immunity, Humoral , Male , Pandemics , SARS-CoV-2
9.
Lancet Respir Med ; 9(6): 622-642, 2021 06.
Article in English | MEDLINE | ID: mdl-33965003

ABSTRACT

The zoonotic SARS-CoV-2 virus that causes COVID-19 continues to spread worldwide, with devastating consequences. While the medical community has gained insight into the epidemiology of COVID-19, important questions remain about the clinical complexities and underlying mechanisms of disease phenotypes. Severe COVID-19 most commonly involves respiratory manifestations, although other systems are also affected, and acute disease is often followed by protracted complications. Such complex manifestations suggest that SARS-CoV-2 dysregulates the host response, triggering wide-ranging immuno-inflammatory, thrombotic, and parenchymal derangements. We review the intricacies of COVID-19 pathophysiology, its various phenotypes, and the anti-SARS-CoV-2 host response at the humoral and cellular levels. Some similarities exist between COVID-19 and respiratory failure of other origins, but evidence for many distinctive mechanistic features indicates that COVID-19 constitutes a new disease entity, with emerging data suggesting involvement of an endotheliopathy-centred pathophysiology. Further research, combining basic and clinical studies, is needed to advance understanding of pathophysiological mechanisms and to characterise immuno-inflammatory derangements across the range of phenotypes to enable optimum care for patients with COVID-19.


Subject(s)
COVID-19 , Multiple Organ Failure , SARS-CoV-2/pathogenicity , COVID-19/immunology , COVID-19/physiopathology , Endothelium/physiopathology , Humans , Immunity , Multiple Organ Failure/etiology , Multiple Organ Failure/physiopathology , Patient Acuity , Severity of Illness Index
10.
J Venom Anim Toxins Incl Trop Dis ; 27: e20200147, 2021 Apr 09.
Article in English | MEDLINE | ID: mdl-33889184

ABSTRACT

Inflammation has accompanied humans since their first ancestors appeared on Earth. Aulus Cornelius Celsus (25 BC-50 AD), a Roman encyclopedist, offered a still valid statement about inflammation: "Notae vero inflammationis sunt quatuor: rubor et tumor cum calore and dolore", defining the four cardinal signs of inflammation as redness and swelling with heat and pain. While inflammation has long been considered as a morbid phenomenon, John Hunter (18th century) and Elie Metchnikoff (19th century) understood that it was a natural and beneficial event that aims to address a sterile or an infectious insult. Many other famous scientists and some forgotten ones have identified the different cellular and molecular players, and deciphered the different mechanisms of inflammation. This review pays tribute to some of the giants who made major contributions, from Hippocrates to the late 19th and first half of the 20th century. We particularly address the discoveries related to phagocytes, diapedesis, chemotactism, and fever. We also mention the findings of the various inflammatory mediators and the different approaches designed to treat inflammatory disorders.

11.
EBioMedicine ; 66: 103291, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33813139

ABSTRACT

Many milestones in medical history rest on animal modeling of human diseases. The SARS-CoV-2 pandemic has evoked a tremendous investigative effort primarily centered on clinical studies. However, several animal SARS-CoV-2/COVID-19 models have been developed and pre-clinical findings aimed at supporting clinical evidence rapidly emerge. In this review, we characterize the existing animal models exposing their relevance and limitations as well as outline their utility in COVID-19 drug and vaccine development. Concurrently, we summarize the status of clinical trial research and discuss the novel tactics utilized in the largest multi-center trials aiming to accelerate generation of reliable results that may subsequently shape COVID-19 clinical treatment practices. We also highlight areas of improvement for animal studies in order to elevate their translational utility. In pandemics, to optimize the use of strained resources in a short time-frame, optimizing and strengthening the synergy between the preclinical and clinical domains is pivotal.


Subject(s)
COVID-19 Drug Treatment , COVID-19 Vaccines , COVID-19/etiology , Disease Models, Animal , SARS-CoV-2/genetics , Age Factors , Animals , Antiviral Agents/pharmacology , COVID-19/physiopathology , COVID-19/therapy , COVID-19 Vaccines/pharmacology , Clinical Trials as Topic , Cricetinae , Ferrets , Humans , Mice , Mutation , Primates
12.
J Infect ; 82(4): 11-21, 2021 04.
Article in English | MEDLINE | ID: mdl-33610685

ABSTRACT

OBJECTIVE: To define the best combination of biomarkers for the diagnosis of infection and sepsis in the emergency room. METHODS: In this prospective study, consecutive patients with a suspicion of infection in the emergency room were included. Eighteen different biomarkers measured in plasma, and twelve biomarkers measured on monocytes, neutrophils, B and T-lymphocytes were studied and the best combinations determined by a gradient tree boosting approach. RESULTS: Overall, 291 patients were included and analysed, 148 with bacterial infection, and 47 with viral infection. The best biomarker combination which first allowed the diagnosis of bacterial infection, included HLA-DR (human leukocyte antigen DR) on monocytes, MerTk (Myeloid-epithelial-reproductive tyrosine kinase) on neutrophils and plasma metaloproteinase-8 (MMP8) with an area under the curve (AUC) = 0.94 [95% confidence interval (IC95): 0.91;0.97]. Among patients in whom a bacterial infection was excluded, the combination of CD64 expression, and CD24 on neutrophils and CX3CR1 on monocytes ended to an AUC = 0.98 [0.96;1] to define those with a viral infection. CONCLUSION: In a convenient cohort of patients admitted with a suspicion of infection, two different combinations of plasma and cell surface biomarkers were performant to identify bacterial and viral infection.


Subject(s)
Sepsis , Area Under Curve , Biomarkers , Emergency Service, Hospital , Humans , Prospective Studies , Sepsis/diagnosis
13.
J Intensive Med ; 1(1): 4-13, 2021 Jul.
Article in English | MEDLINE | ID: mdl-36943823

ABSTRACT

Humanity has regularly faced the threat of epidemics and pandemics over the course of history. Successful attempts to protect populations were initially made with the development of new vaccines, such as those against plague and cholera, under the leadership of the bacteriologist Waldemar Haffkine. Vaccines have led to a complete eradication of smallpox and bovine plague and a major reduction in other infectious diseases including diphtheria, typhoid fever, poliomyelitis, and Haemophilus influenzae type B meningitis. While a few coronaviruses have been identified that seasonally infect humans causing mild symptoms, the emergence of a new zoonotic severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has rapidly triggered the ongoing coronavirus disease 2019 (COVID-19) as a global pandemic responsible for widespread mortality. The severe phenotypes of COVID-19 resemble a previous infectious threat that was initially designated as hospital fever and puerperal fever, presently known as sepsis. A SARS-CoV-2 infection has frequently been considered as a form of viral sepsis (owing to common features with bacterial sepsis) but is also associated with an array of specific and unique symptoms. Rapid progress in anti-SARS-CoV-2 vaccine development, in particular, the design of efficient messenger RNA (mRNA) and recombinant adenovirus vaccines, is crucial for curbing the pandemic.

14.
J. venom. anim. toxins incl. trop. dis ; 27: e20200147, 2021. tab, graf
Article in English | VETINDEX, LILACS | ID: biblio-1287092

ABSTRACT

Inflammation has accompanied humans since their first ancestors appeared on Earth. Aulus Cornelius Celsus (25 BC-50 AD), a Roman encyclopedist, offered a still valid statement about inflammation: "Notae vero inflammationis sunt quatuor: rubor et tumor cum calore and dolore", defining the four cardinal signs of inflammation as redness and swelling with heat and pain. While inflammation has long been considered as a morbid phenomenon, John Hunter (18th century) and Elie Metchnikoff (19th century) understood that it was a natural and beneficial event that aims to address a sterile or an infectious insult. Many other famous scientists and some forgotten ones have identified the different cellular and molecular players, and deciphered the different mechanisms of inflammation. This review pays tribute to some of the giants who made major contributions, from Hippocrates to the late 19th and first half of the 20th century. We particularly address the discoveries related to phagocytes, diapedesis, chemotactism, and fever. We also mention the findings of the various inflammatory mediators and the different approaches designed to treat inflammatory disorders.(AU)


Subject(s)
Phagocytosis , Transendothelial and Transepithelial Migration/physiology , Inflammation/classification , Fever
15.
Med Sci (Paris) ; 36(8-9): 803-809, 2020.
Article in French | MEDLINE | ID: mdl-32821055

ABSTRACT

Jules Bordet came to the Institut Pasteur soon after his MD graduation at the Université libre de Bruxelles, thanks to a grant from the Belgian government. He joined there the laboratory of Elie Metchnikoff, the father of phagocytes and cellular immunity. Amazingly, he will decipher there some of the key mechanisms of humoral immunity initially discovered by the German school against which his mentor was fighting. He described the mechanisms that govern bacteriolysis and hemolysis, following the action of immune sera. Even if he favored the term alexin coined by Hans Buchner, he is indeed one of the founding fathers of the complement system (term coined by Paul Ehrlich). It is for these works that he was awarded in October 1920 the 1919 Nobel Prize. Back in Belgium, he became the director of Institut Pasteur du Brabant and made another landmark discovery, namely the identification of the bacillus of whooping cough, now named Bordetella pertussis.


TITLE: Jules Bordet, un homme de conviction - Centenaire de l'attribution de son prix Nobel. ABSTRACT: Docteur en médecine, bénéficiant d'une bourse du gouvernement belge, Jules Bordet vint se former au sein du laboratoire du père de l'immunité cellulaire, Elie Metchnikoff, à l'Institut Pasteur. Paradoxalement, il va y déchiffrer certains des mécanismes clés de l'immunité humorale, initialement découverte par l'école allemande. Il y décrit notamment les mécanismes qui aboutissent à la bactériolyse et l'hémolyse par l'action d'immunsérums. Même s'il favorisa le terme d'alexine, créé par Hans Buchner, c'est bien le système du complément (terme inventé par Paul Ehrlich) dont il est un des pères fondateurs. C'est pour ces travaux qu'il se verra attribué en octobre 1920 le prix Nobel de physiologie ou médecine millésimé 1919. Il identifia aussi le bacille de la coqueluche, qui porte son nom Bordetella pertussis.


Subject(s)
Bacteriology , Laboratory Personnel , Nobel Prize , Bacteriology/history , Bacteriolysis/physiology , Belgium , Bioethics , Hemagglutination Tests/history , History, 19th Century , History, 20th Century , Humans , Immunity, Cellular/physiology , Immunity, Humoral/physiology , Laboratory Personnel/history , Male , Serogroup , Serologic Tests/history
16.
Shock ; 54(4): 416-437, 2020 10.
Article in English | MEDLINE | ID: mdl-32433217

ABSTRACT

Approximately 3 billion people around the world have gone into some form of social separation to mitigate the current severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic. The uncontrolled influx of patients in need of emergency care has rapidly brought several national health systems to near-collapse with deadly consequences to those afflicted by Coronavirus Disease 2019 (COVID-19) and other critical diseases associated with COVID-19. Solid scientific evidence regarding SARS-CoV-2/COVID-19 remains scarce; there is an urgent need to expand our understanding of the SARS-CoV-2 pathophysiology to facilitate precise and targeted treatments. The capacity for rapid information dissemination has emerged as a double-edged sword; the existing gap of high-quality data is frequently filled by anecdotal reports, contradictory statements, and misinformation. This review addresses several important aspects unique to the SARS-CoV-2/COVID-19 pandemic highlighting the most relevant knowledge gaps and existing windows-of-opportunity. Specifically, focus is given on SARS-CoV-2 immunopathogenesis in the context of experimental therapies and preclinical evidence and their applicability in supporting efficacious clinical trial planning. The review discusses the existing challenges of SARS-CoV-2 diagnostics and the potential application of translational technology for epidemiological predictions, patient monitoring, and treatment decision-making in COVID-19. Furthermore, solutions for enhancing international strategies in translational research, cooperative networks, and regulatory partnerships are contemplated.


Subject(s)
Betacoronavirus , Clinical Laboratory Techniques , Coronavirus Infections/diagnosis , Coronavirus Infections/therapy , Pneumonia, Viral/diagnosis , Pneumonia, Viral/therapy , COVID-19 , COVID-19 Testing , Clinical Trials as Topic , Coronavirus Infections/drug therapy , Coronavirus Infections/transmission , Humans , Pandemics , Pneumonia, Viral/transmission , SARS-CoV-2 , COVID-19 Drug Treatment
17.
EMBO Mol Med ; 12(4): e10128, 2020 04 07.
Article in English | MEDLINE | ID: mdl-32176432

ABSTRACT

Sepsis has been identified by the World Health Organization (WHO) as a global health priority. There has been a tremendous effort to decipher underlying mechanisms responsible for organ failure and death, and to develop new treatments. Despite saving thousands of animals over the last three decades in multiple preclinical studies, no new effective drug has emerged that has clearly improved patient outcomes. In the present review, we analyze the reasons for this failure, focusing on the inclusion of inappropriate patients and the use of irrelevant animal models. We advocate against repeating the same mistakes and propose changes to the research paradigm. We discuss the long-term consequences of surviving sepsis and, finally, list some putative approaches-both old and new-that could help save lives and improve survivorship.


Subject(s)
Sepsis , Translational Research, Biomedical , Animals , Disease Models, Animal , Global Health , Humans , Patient Selection , Sepsis/therapy , Translational Research, Biomedical/trends , World Health Organization
19.
Cell Rep ; 29(12): 3933-3945.e3, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31851924

ABSTRACT

Natural killer (NK) cells are unique players in innate immunity and, as such, an attractive target for immunotherapy. NK cells display immune memory properties in certain models, but the long-term status of NK cells following systemic inflammation is unknown. Here we show that following LPS-induced endotoxemia in mice, NK cells acquire cell-intrinsic memory-like properties, showing increased production of IFNγ upon specific secondary stimulation. The NK cell memory response is detectable for at least 9 weeks and contributes to protection from E. coli infection upon adoptive transfer. Importantly, we reveal a mechanism essential for NK cell memory, whereby an H3K4me1-marked latent enhancer is uncovered at the ifng locus. Chemical inhibition of histone methyltransferase activity erases the enhancer and abolishes NK cell memory. Thus, NK cell memory develops after endotoxemia in a histone methylation-dependent manner, ensuring a heightened response to secondary stimulation.


Subject(s)
Endotoxemia/immunology , Escherichia coli Infections/immunology , Histones/metabolism , Immunity, Innate/immunology , Immunologic Memory/immunology , Inflammation/immunology , Killer Cells, Natural/immunology , Animals , Endotoxemia/metabolism , Endotoxemia/microbiology , Endotoxemia/pathology , Enhancer Elements, Genetic , Escherichia coli/immunology , Escherichia coli Infections/microbiology , Histones/genetics , Inflammation/metabolism , Inflammation/microbiology , Inflammation/pathology , Interferon-gamma/metabolism , Killer Cells, Natural/metabolism , Killer Cells, Natural/microbiology , Killer Cells, Natural/pathology , Male , Mice
20.
Front Immunol ; 10: 2114, 2019.
Article in English | MEDLINE | ID: mdl-31572361

ABSTRACT

The 100th Anniversary of the Nobel Prize in Physiology or Medicine 1919 awarded to Jules Bordet offers the opportunity to underline the contributions of this Belgian doctor to the blooming of immunology at the end of the nineteenth century at the Institut Pasteur de Paris. It is also the occasion to emphasize his achievements as director of the Institut Pasteur du Brabant and professor at the Université libre de Bruxelles. Both in France and Belgium, he developed a holistic vision of immunology as a science at the crossroads of chemistry, physiology, and microbiology.


Subject(s)
Allergy and Immunology/history , Nobel Prize , Allergy and Immunology/education , Animals , Anniversaries and Special Events , Belgium , France , History, 20th Century , Humans , Portraits as Topic
SELECTION OF CITATIONS
SEARCH DETAIL
...