Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microbiol Spectr ; 12(6): e0367323, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38722158

ABSTRACT

Xanthomonas citri subsp. citri (Xcc) is a bacterium that causes citrus canker, an economically important disease that results in premature fruit drop and reduced yield of fresh fruit. In this study, we demonstrated the involvement of XanB, an enzyme with phosphomannose isomerase (PMI) and guanosine diphosphate-mannose pyrophosphorylase (GMP) activities, in Xcc pathogenicity. Additionally, we found that XanB inhibitors protect the host against Xcc infection. Besides being deficient in motility, biofilm production, and ultraviolet resistance, the xanB deletion mutant was unable to cause disease, whereas xanB complementation restored wild-type phenotypes. XanB homology modeling allowed in silico virtual screening of inhibitors from databases, three of them being suitable in terms of absorption, distribution, metabolism, excretion, and toxicity (ADME/Tox) properties, which inhibited GMP (but not PMI) activity of the Xcc recombinant XanB protein in more than 50%. Inhibitors reduced citrus canker severity up to 95%, similarly to copper-based treatment. xanB is essential for Xcc pathogenicity, and XanB inhibitors can be used for the citrus canker control. IMPORTANCE: Xcc causes citrus canker, a threat to citrus production, which has been managed with copper, being required a more sustainable alternative for the disease control. XanB was previously found on the surface of Xcc, interacting with the host and displaying PMI and GMP activities. We demonstrated by xanB deletion and complementation that GMP activity plays a critical role in Xcc pathogenicity, particularly in biofilm formation. XanB homology modeling was performed, and in silico virtual screening led to carbohydrate-derived compounds able to inhibit XanB activity and reduce disease symptoms by 95%. XanB emerges as a promising target for drug design for control of citrus canker and other economically important diseases caused by Xanthomonas sp.


Subject(s)
Bacterial Proteins , Citrus , Plant Diseases , Xanthomonas , Xanthomonas/enzymology , Xanthomonas/genetics , Xanthomonas/pathogenicity , Citrus/microbiology , Plant Diseases/microbiology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Nucleotidyltransferases/metabolism , Nucleotidyltransferases/genetics , Biofilms/growth & development , Virulence
2.
Molecules ; 26(5)2021 Mar 06.
Article in English | MEDLINE | ID: mdl-33800893

ABSTRACT

In order to replace the huge amounts of copper salts used in citrus orchards, alternatives have been sought in the form of organic compounds of natural origin with activity against the causative agent of citrus canker, the phytopathogen Xanthomonas citri subsp. Citri. We synthesized a series of 4-alkoxy-1,2-benzene diols (alkyl-BDOs) using 1,2,4-benzenetriol (BTO) as a starting material through a three-step synthesis route and evaluated their suitability as antibacterial compounds. Our results show that alkyl ethers derived from 1,2,4-benzenetriol have bactericidal activity against X. citri, disrupting the bacterial cell membrane within 15 min. Alkyl-BDOs were also shown to remain active against the bacteria while in solution, and presented low toxicity to (human) MRC-5 cells. Therefore, we have demonstrated that 1,2,4-benzenetriol-a molecule that can be obtained from agricultural residues-is an adequate precursor for the synthesis of new compounds with activity against X. citri.


Subject(s)
Anti-Bacterial Agents/pharmacology , Benzene Derivatives/pharmacology , Citrus/drug effects , Fibroblasts/drug effects , Plant Diseases/microbiology , Plant Leaves/drug effects , Xanthomonas/pathogenicity , Anti-Bacterial Agents/chemistry , Benzene Derivatives/chemistry , Cell Proliferation , Citrus/microbiology , Fibroblasts/cytology , Humans , Plant Leaves/microbiology
3.
Int J Mol Sci ; 19(10)2018 Oct 06.
Article in English | MEDLINE | ID: mdl-30301234

ABSTRACT

Xanthomonas citri subsp. citri (Xcc) causes citrus canker, affecting sweet orange-producing areas around the world. The current chemical treatment available for this disease is based on cupric compounds. For this reason, the objective of this study was to design antibacterial agents. In order to do this, we analyzed the anti-Xcc activity of 36 alkyl dihydroxybenzoates and we found 14 active compounds. Among them, three esters with the lowest minimum inhibitory concentration values were selected; compounds 4 (52 µM), 16 (80 µM) and 28 (88 µM). Our study demonstrated that alkyl dihydroxybenzoates cause a delay in the exponential phase. The permeability capacity of alkyl dihydroxybenzoates in a quarter of MIC was compared to nisin (positive control). Compound 28 was the most effective (93.8), compared to compound 16 (41.3) and compound 4 (13.9) by percentage values. Finally, all three compounds showed inhibition of FtsZ GTPase activity, and promoted changes in protofilaments, leading to depolymerization, which prevents bacterial cell division. In conclusion, heptyl dihydroxybenzoates (compounds 4, 16 and 28) are promising anti-Xcc agents which may serve as an alternative for the control of citrus canker.


Subject(s)
Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Drug Design , Hydroxybenzoates/chemistry , Hydroxybenzoates/pharmacology , Xanthomonas/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/isolation & purification , Cell Membrane Permeability/drug effects , GTP Phosphohydrolases/antagonists & inhibitors , Hydroxybenzoates/chemical synthesis , Microbial Sensitivity Tests , Molecular Structure , Plant Diseases/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...