Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Commun Med (Lond) ; 4(1): 63, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575714

ABSTRACT

BACKGROUND: Since the beginning of the anti-COVID-19 vaccination campaign, it has become evident that vaccinated subjects exhibit considerable inter-individual variability in the response to the vaccine that could be partly explained by host genetic factors. A recent study reported that the immune response elicited by the Oxford-AstraZeneca vaccine in individuals from the United Kingdom was influenced by a specific allele of the human leukocyte antigen gene HLA-DQB1. METHODS: We carried out a genome-wide association study to investigate the genetic determinants of the antibody response to the Pfizer-BioNTech vaccine in an Italian cohort of 1351 subjects recruited in three centers. Linear regressions between normalized antibody levels and genotypes of more than 7 million variants was performed, using sex, age, centers, days between vaccination boost and serological test, and five principal components as covariates. We also analyzed the association between normalized antibody levels and 204 HLA alleles, with the same covariates as above. RESULTS: Our study confirms the involvement of the HLA locus and shows significant associations with variants in HLA-A, HLA-DQA1, and HLA-DQB1 genes. In particular, the HLA-A*03:01 allele is the most significantly associated with serum levels of anti-SARS-CoV-2 antibodies. Other alleles, from both major histocompatibility complex class I and II are significantly associated with antibody levels. CONCLUSIONS: These results support the hypothesis that HLA genes modulate the response to Pfizer-BioNTech vaccine and highlight the need for genetic studies in diverse populations and for functional studies aimed to elucidate the relationship between HLA-A*03:01 and CD8+ cell response upon Pfizer-BioNTech vaccination.


It is known that people respond differently to vaccines. It has been proposed that differences in their genes might play a role. We studied the individual genetic makeup of 1351 people from Italy to see if there was a link between their genes and how well they responded to the BNT162b2 mRNA COVID-19 vaccine. We discovered certain genetic differences linked to higher levels of protection in those who got the vaccine. Our findings suggest that individual's genetic characteristics play a role in vaccine response. A larger population involving diverse ethnic backgrounds will need to be studied to confirm the generalizability of these findings. Better understanding of this could facilitate improved vaccine designs against new SARS-CoV-2 variants.

2.
Biomed Pharmacother ; 173: 116380, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38447450

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease affecting motor neurons. Considerable evidence indicates that early skeletal muscle atrophy plays a crucial role in the disease pathogenesis, leading to an altered muscle-motor neuron crosstalk that, in turn, may contribute to motor neuron degeneration. Currently, there is no effective treatment for ALS, highlighting the need to dig deeper into the pathological mechanisms for developing innovative therapeutic strategies. FM19G11 is a novel drug able to modulate the global cellular metabolism, but its effects on ALS skeletal muscle atrophy and mitochondrial metabolism have never been evaluated, yet. This study investigated whether FM19G11-loaded nanoparticles (NPs) may affect the bioenergetic status in myoblasts isolated from G93A-SOD1 mice at different disease stages. We found that FM19G1-loaded NP treatment was able to increase transcriptional levels of Akt1, Akt3, Mef2a, Mef2c and Ucp2, which are key genes associated with cell proliferation (Akt1, Akt3), muscle differentiation (Mef2c), and mitochondrial activity (Ucp2), in G93A-SOD1 myoblasts. These cells also showed a significant reduction of mitochondrial area and networks, in addition to decreased ROS production after treatment with FM19G11-loaded NPs, suggesting a ROS clearance upon the amelioration of mitochondrial dynamics. Our overall findings demonstrate a significant impact of FM19G11-loaded NPs on muscle cell function and bioenergetic status in G93A-SOD1 myoblasts, thus promising to open new avenues towards possible adoption of FM19G11-based nanotherapies to slow muscle degeneration in the frame of ALS and muscle disorders.


Subject(s)
Amyotrophic Lateral Sclerosis , Benzamides , Nanoparticles , Neurodegenerative Diseases , Mice , Animals , Superoxide Dismutase-1/metabolism , Reactive Oxygen Species/metabolism , Amyotrophic Lateral Sclerosis/drug therapy , Neurodegenerative Diseases/pathology , Myoblasts/metabolism , Atrophy/pathology , Mice, Transgenic , Disease Models, Animal , Superoxide Dismutase/metabolism
3.
Front Pediatr ; 11: 1175584, 2023.
Article in English | MEDLINE | ID: mdl-37425262

ABSTRACT

Behcet's disease (BD) is a rare vasculitis characterized by multisystemic inflammation. Central nervous system (CNS) involvement is rare and heterogeneous, particularly in the pediatric population. A diagnosis of neuro-Behcet could be highly challenging, especially if neurological manifestations precede other systemic features; however, its timely definition is crucial to prevent long-term sequelae. In this study, we describe the case of a girl who, at 13 months of age, presented with a first episode of encephalopathy compatible with acute disseminated encephalomyelitis, followed, after 6 months, by a neurological relapse characterized by ophthalmoparesis and gait ataxia, in association with new inflammatory lesions in the brain and spinal cord, suggesting a neuromyelitis optica spectrum disorder. The neurological manifestations were successfully treated with high-dose steroids and intravenous immunoglobulins. In the following months, the patient developed a multisystemic involvement suggestive of Behcet's disease, characterized by polyarthritis and uveitis, associated with HLA-B51 positivity. The challenge presented by this unique case required a multidisciplinary approach involving pediatric neurologists, neuro-radiologists, and pediatric rheumatologists, with all of these specialists creating awareness about early-onset acquired demyelinating syndromes (ADSs). Given the rarity of this presentation, we performed a review of the literature focusing on neurological manifestations in BD and differential diagnosis of patients with early-onset ADS.

4.
Biomedicines ; 11(3)2023 Feb 28.
Article in English | MEDLINE | ID: mdl-36979710

ABSTRACT

The thymus is widely recognized as an immunological niche where autoimmunity against the acetylcholine receptor (AChR) develops in myasthenia gravis (MG) patients, who mostly present thymic hyperplasia and thymoma. Thymoma-associated MG is frequently characterized by autoantibodies to the muscular ryanodine receptor 1 (RYR1) and titin (TTN), along with anti-AChR antibodies. By real-time PCR, we analyzed muscle-CHRNA1, RYR1, and TTN-and muscle-like-NEFM, RYR3 and HSP60-autoantigen gene expression in MG thymuses with hyperplasia and thymoma, normal thymuses and non-MG thymomas, to check for molecular changes potentially leading to an altered antigen presentation and autoreactivity. We found that CHRNA1 (AChR-α subunit) and AIRE (autoimmune regulator) genes were expressed at lower levels in hyperplastic and thymoma MG compared to the control thymuses, and that the RYR1 and TTN levels were decreased in MG versus the non-MG thymomas. Genes encoding autoantigens that share epitopes with AChR-α (NEFM and HSP60), RYR1 (neuronal RYR3), and TTN (NEFM) were up-regulated in thymomas versus hyperplastic and control thymuses, with distinct molecular patterns across the thymoma histotypes that could be relevant for autoimmunity development. Our findings support the idea that altered muscle autoantigen expression, related with hyperplastic and neoplastic changes, may favor autosensitization in the MG thymus, and that molecular mimicry involving tumor-related muscle-like proteins may be a mechanism that makes thymoma prone to developing MG.

5.
Nat Cell Biol ; 25(4): 550-564, 2023 04.
Article in English | MEDLINE | ID: mdl-36894671

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the RNA virus responsible for the coronavirus disease 2019 (COVID-19) pandemic. Although SARS-CoV-2 was reported to alter several cellular pathways, its impact on DNA integrity and the mechanisms involved remain unknown. Here we show that SARS-CoV-2 causes DNA damage and elicits an altered DNA damage response. Mechanistically, SARS-CoV-2 proteins ORF6 and NSP13 cause degradation of the DNA damage response kinase CHK1 through proteasome and autophagy, respectively. CHK1 loss leads to deoxynucleoside triphosphate (dNTP) shortage, causing impaired S-phase progression, DNA damage, pro-inflammatory pathways activation and cellular senescence. Supplementation of deoxynucleosides reduces that. Furthermore, SARS-CoV-2 N-protein impairs 53BP1 focal recruitment by interfering with damage-induced long non-coding RNAs, thus reducing DNA repair. Key observations are recapitulated in SARS-CoV-2-infected mice and patients with COVID-19. We propose that SARS-CoV-2, by boosting ribonucleoside triphosphate levels to promote its replication at the expense of dNTPs and by hijacking damage-induced long non-coding RNAs' biology, threatens genome integrity and causes altered DNA damage response activation, induction of inflammation and cellular senescence.


Subject(s)
COVID-19 , Animals , Mice , SARS-CoV-2 , Cellular Senescence , DNA Damage
6.
Int J Mol Sci ; 24(5)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36902041

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is characterized by the progressive, irreversible loss of upper and lower motor neurons (UMNs, LMNs). MN axonal dysfunctions are emerging as relevant pathogenic events since the early ALS stages. However, the exact molecular mechanisms leading to MN axon degeneration in ALS still need to be clarified. MicroRNA (miRNA) dysregulation plays a critical role in the pathogenesis of neuromuscular diseases. These molecules represent promising biomarkers for these conditions since their expression in body fluids consistently reflects distinct pathophysiological states. Mir-146a has been reported to modulate the expression of the NFL gene, encoding the light chain of the neurofilament (NFL) protein, a recognized biomarker for ALS. Here, we analyzed miR-146a and Nfl expression in the sciatic nerve of G93A-SOD1 ALS mice during disease progression. The miRNA was also analyzed in the serum of affected mice and human patients, the last stratified relying on the predominant UMN or LMN clinical signs. We revealed a significant miR-146a increase and Nfl expression decrease in G93A-SOD1 peripheral nerve. In the serum of both ALS mice and human patients, the miRNA levels were reduced, discriminating UMN-predominant patients from the LMN ones. Our findings suggest a miR-146a contribution to peripheral axon impairment and its potential role as a diagnostic and prognostic biomarker for ALS.


Subject(s)
Amyotrophic Lateral Sclerosis , MicroRNAs , Nerve Degeneration , Animals , Humans , Mice , Amyotrophic Lateral Sclerosis/diagnosis , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Biomarkers/blood , Biomarkers/metabolism , Disease Models, Animal , Mice, Transgenic , MicroRNAs/blood , MicroRNAs/genetics , MicroRNAs/metabolism , Nerve Degeneration/diagnosis , Nerve Degeneration/genetics , Nerve Degeneration/metabolism , Peripheral Nerves/pathology , Superoxide Dismutase-1/genetics , Axons/pathology , Neurofilament Proteins , Early Diagnosis , Disease Progression
7.
Neuromuscul Disord ; 33(3): 288-294, 2023 03.
Article in English | MEDLINE | ID: mdl-36842303

ABSTRACT

In this study we employed a comprehensive immune profiling approach to determine innate and adaptive immune response to SARS-CoV-2 infection and mRNA vaccines in patients with myasthenia gravis receiving rituximab. By multicolour cytometry, dendritic and natural killer cells, B- and T-cell subsets, including T-cells producing IFN-γ stimulated with SARS-CoV-2 peptides, were analysed after infection and mRNA vaccination. In the same conditions, anti-spike antibodies and cytokines' levels were measured in sera. Despite the impaired B cell and humoral response, rituximab patients showed an intact innate, CD8 T-cell and IFN-γ specific CD4+ and CD8+ T-cell response after infection and vaccination, comparable to controls. No signs of cytokine mediated inflammatory cascade was observed. Our study provides evidence of protective immune response after SARS-CoV-2 infection and mRNA vaccines in patients with myasthenia gravis on B cell depleting therapy and highlights the need for prospective studies with larger cohorts to clarify the role of B cells in SARS-CoV-2 immune response.


Subject(s)
COVID-19 , Myasthenia Gravis , Humans , SARS-CoV-2 , mRNA Vaccines , Rituximab , Prospective Studies , Cytokines
8.
Front Cell Neurosci ; 16: 982760, 2022.
Article in English | MEDLINE | ID: mdl-36035258

ABSTRACT

Background and objectives: Multisystem involvement in spinal muscular atrophy (SMA) is gaining prominence since different therapeutic options are emerging, making the way for new SMA phenotypes and consequent challenges in clinical care. Defective immune organs have been found in preclinical models of SMA, suggesting an involvement of the immune system in the disease. However, the immune state in SMA patients has not been investigated so far. Here, we aimed to evaluate the innate and adaptive immunity pattern in SMA type 1 to type 3 patients, before and after nusinersen treatment. Methods: Twenty one pediatric SMA type 1, 2, and 3 patients and 12 adult SMA type 2 and 3 patients were included in this single-center retrospective study. A Bio-Plex Pro-Human Cytokine 13-plex Immunoassay was used to measure cytokines in serum and cerebrospinal fluid (CSF) of the study cohort before and after 6 months of therapy with nusinersen. Results: We detected a significant increase in IL-1ß, IL-4, IL-6, IL-10, IFN-γ, IL-17A, IL-22, IL-23, IL-31, and IL-33, in serum of pediatric and adult SMA patients at baseline, compared to pediatric reference ranges and to adult healthy controls. Pediatric patients showed also a significant increase in TNF-α and IL-17F levels at baseline. IL-4, IFN-γ, Il-22, IL-23, and IL-33 decreased in serum of pediatric SMA patients after 6 months of therapy when compared to baseline. A significant decrease in IL-4, IL-6, INF-γ, and IL-17A was detected in serum of adult SMA patients after treatment. CSF of both pediatric and adult SMA patients displayed detectable levels of all cytokines with no significant differences after 6 months of treatment with nusinersen. Notably, a higher baseline expression of IL-23 in serum correlated with a worse motor function outcome after treatment in pediatric patients. Moreover, after 6 months of treatment, patients presenting a higher IL-10 concentration in serum showed a better Hammersmith Functional Motor Scale Expanded (HFMSE) score. Discussion: Pediatric and adult SMA patients show an inflammatory signature in serum that is reduced upon SMN2 modulating treatment, and the presence of inflammatory mediators in CSF. Our findings enhance SMA knowledge with potential clinical and therapeutic implications.

9.
Biomedicines ; 10(6)2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35740382

ABSTRACT

The complement system plays a key role in myasthenia gravis (MG). Anti-complement drugs are emerging as effective therapies to treat anti-acetylcholine receptor (AChR) antibody-positive MG patients, though their usage is still limited by the high costs. Here, we searched for plasma complement proteins as indicators of complement activation status in AChR-MG patients, and potential biomarkers for tailoring anti-complement therapy in MG. Plasma was collected from AChR-MG and MuSK-MG patients, and healthy controls. Multiplex immunoassays and ELISA were used to quantify a panel of complement components (C1Q, C2, C3, C4, C5, Factor B, Factor H, MBL, and properdin) and activation products (C4b, C3b, C5a, and C5b-9), of classical, alternative and lectin pathways. C2 and C5 levels were significantly reduced, and C3, C3b, and C5a increased, in plasma of AChR-MG, but not MuSK-MG, patients compared to controls. This protein profile was indicative of complement activation. We obtained sensitivity and specificity performance results suggesting plasma C2, C3, C3b, and C5 as biomarkers for AChR-MG. Our findings reveal a plasma complement "C2, C3, C5, C3b, and C5a" profile associated with AChR-MG to be further investigated as a biomarker of complement activation status in AChR-MG patients, opening new perspectives for tailoring of anti-complement therapies to improve the disease treatment.

10.
Ann Clin Transl Neurol ; 8(12): 2314-2318, 2021 12.
Article in English | MEDLINE | ID: mdl-34825771

ABSTRACT

We report a subtype of immune-mediated encephalitis associated with COVID-19, which closely mimics acute-onset sporadic Creutzfeldt-Jakob disease. A 64-year-old man presented with confusion, aphasia, myoclonus, and a silent interstitial pneumonia. He tested positive for SARS-CoV-2. Cognition and myoclonus rapidly deteriorated, EEG evolved to generalized periodic discharges and brain MRI showed multiple cortical DWI hyperintensities. CSF analysis was normal, except for a positive 14-3-3 protein. RT-QuIC analysis was negative. High levels of pro-inflammatory cytokines were present in the CSF and serum. Treatment with steroids and intravenous immunoglobulins produced EEG and clinical improvement, with a good neurological outcome at a 6-month follow-up.


Subject(s)
COVID-19/complications , Encephalitis/etiology , Creutzfeldt-Jakob Syndrome , Encephalitis/pathology , Encephalitis/physiopathology , Humans , Male , Middle Aged , SARS-CoV-2
11.
Int J Mol Sci ; 22(11)2021 May 26.
Article in English | MEDLINE | ID: mdl-34073630

ABSTRACT

Motor neuron diseases (MNDs) are neurodegenerative disorders characterized by upper and/or lower MN loss. MNDs include amyotrophic lateral sclerosis (ALS), spinal muscular atrophy (SMA), and spinal and bulbar muscular atrophy (SBMA). Despite variability in onset, progression, and genetics, they share a common skeletal muscle involvement, suggesting that it could be a primary site for MND pathogenesis. Due to the key role of muscle-specific microRNAs (myomiRs) in skeletal muscle development, by real-time PCR we investigated the expression of miR-206, miR-133a, miR-133b, and miR-1, and their target genes, in G93A-SOD1 ALS, Δ7SMA, and KI-SBMA mouse muscle during disease progression. Further, we analyzed their expression in serum of SOD1-mutated ALS, SMA, and SBMA patients, to demonstrate myomiR role as noninvasive biomarkers. Our data showed a dysregulation of myomiRs and their targets, in ALS, SMA, and SBMA mice, revealing a common pathogenic feature associated with muscle impairment. A similar myomiR signature was observed in patients' sera. In particular, an up-regulation of miR-206 was identified in both mouse muscle and serum of human patients. Our overall findings highlight the role of myomiRs as promising biomarkers in ALS, SMA, and SBMA. Further investigations are needed to explore the potential of myomiRs as therapeutic targets for MND treatment.


Subject(s)
Amyotrophic Lateral Sclerosis , Bulbo-Spinal Atrophy, X-Linked , MicroRNAs , Mutation, Missense , Superoxide Dismutase-1 , Superoxide Dismutase , Amino Acid Substitution , Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/metabolism , Animals , Bulbo-Spinal Atrophy, X-Linked/genetics , Bulbo-Spinal Atrophy, X-Linked/metabolism , Humans , Mice , Mice, Transgenic , MicroRNAs/genetics , MicroRNAs/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism
12.
Front Immunol ; 12: 667336, 2021.
Article in English | MEDLINE | ID: mdl-34163474

ABSTRACT

Genetic susceptibility to myasthenia gravis (MG) associates with specific HLA alleles and haplotypes at the class I and II regions in various populations. Previous studies have only examined alleles at a limited number of HLA loci that defined only broad serotypes or alleles defined at the protein sequence level. Consequently, genetic variants in noncoding and untranslated HLA gene segments have not been fully explored but could also be important determinants for MG. To gain further insight into the role of HLA in MG, we applied next-generation sequencing to analyze sequence variation at eleven HLA genes in early-onset (EO) and late-onset (LO) non-thymomatous MG patients positive for the acetylcholine receptor (AChR) antibodies and ethnically matched controls from Italy, Norway, and Sweden. For all three populations, alleles and haplotype blocks present on the ancestral haplotype AH8.1 were associated with risk in AChR-EOMG patients. HLA-B*08:01:01:01 was the dominant risk allele in Italians (OR = 3.28, P = 1.83E-05), Norwegians (OR = 3.52, P = 4.41E-16), and in Swedes HLA-B*08:01 was the primary risk allele (OR = 4.24, P <2.2E-16). Protective alleles and haplotype blocks were identified on the HLA-DRB7, and HLA-DRB13.1 class II haplotypes in Italians and Norwegians, whereas in Swedes HLA-DRB7 exhibited the main protective effect. For AChR-LOMG patients, the HLA-DRB15.1 haplotype and associated alleles were significantly associated with susceptibility in all groups. The HLA-DR13-HLA-DR-HLA-DQ haplotype was associated with protection in all AChR-LOMG groups. This study has confirmed and extended previous findings that the immunogenetic predisposition profiles for EOMG and LOMG are distinct. In addition, the results are consistent with a role for non-coding HLA genetic variants in the pathogenesis of MG.


Subject(s)
Alleles , HLA-B Antigens/genetics , HLA-DR Antigens/genetics , Myasthenia Gravis/genetics , Adult , Age of Onset , Female , Genetic Predisposition to Disease , Haplotypes , High-Throughput Nucleotide Sequencing , Humans , Italy , Male , Middle Aged , Myasthenia Gravis/epidemiology , Myasthenia Gravis/immunology , Norway , Sweden
13.
J Nucl Med ; 62(8): 1171-1176, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34016729

ABSTRACT

A 40-y-old woman with severe acute respiratory syndrome coronavirus 2 infection developed neurologic manifestations (confusion, agitation, seizures, dyskinesias, and parkinsonism) a few weeks after the onset of severe acute respiratory syndrome. MRI and cerebrospinal fluid analyses were unremarkable, but 18F-FDG PET/CT showed limbic and extralimbic hypermetabolism. A full recovery, alongside 18F-FDG normalization in previously hypermetabolic areas, was observed after intravenous immunoglobulin administration.


Subject(s)
Brain Diseases/etiology , COVID-19/complications , SARS-CoV-2 , Adult , Brain/diagnostic imaging , Female , Fluorodeoxyglucose F18 , Humans
14.
Immunotargets Ther ; 9: 317-331, 2020.
Article in English | MEDLINE | ID: mdl-33365280

ABSTRACT

Generalized myasthenia gravis (gMG) is a rare autoimmune disorder affecting the neuromuscular junction (NMJ). Approximately 80-90% of patients display antibodies directed against the nicotinic acetylcholine receptor (AChR). A major drive of AChR antibody-positive MG pathology is represented by complement activation. The role of the complement cascade has been largely demonstrated in patients and in MG animal models. Complement activation at the NMJ leads to focal lysis of the post-synaptic membrane, disruption of the characteristic folds, and reduction of AChR. Given that the complement system works as an activation cascade, there are many potential targets that can be considered for therapeutic intervention. Preclinical studies have confirmed the efficacy of complement inhibition in ameliorating MG symptoms. Eculizumab, an antibody directed towards C5, has recently been approved for the treatment of AChR antibody-positive gMG. Other complement inhibitors, targeting C5 as well, are currently under phase III study. Complement inhibitors, however, may present prohibitive costs. Therefore, the identification of a subset of patients more or less prone to respond to such therapies would be beneficial. For such purpose, there is a critical need to identify possible biomarkers predictive of therapeutic response, a field not yet sufficiently explored in MG. This review aims to give an overview of the complement cascade involvement in MG, the evolution of complement-inhibiting therapies and possible biomarkers useful to tailor and monitor complement-directed therapies.

15.
Expert Opin Biol Ther ; 20(9): 991-998, 2020 09.
Article in English | MEDLINE | ID: mdl-32602752

ABSTRACT

INTRODUCTION: Acetylcholine receptor antibody-positive generalized myasthenia gravis (gMG) is effectively treated with symptomatic and immunosuppressive drugs but a proportion of patients has a persistent disease and severe adverse events (AEs). The unmet medical needs are specific immunosuppression and AE lowering. Eculizumab blocks C5 protecting neuromuscular junction from the destructive autoantibody effects. Phase II (Study C08-001) and III (ECU-MG-301) studies, with the open-label extension (ECU-MG-302), demonstrated eculizumab efficacy and safety in refractory gMG patients. AREAS COVERED: We provide an overview of eculizumab biological features, clinical efficacy, and safety in gMG patients, highlighting our perspective on the drug positioning in the MG treatment algorithm. EXPERT OPINION: Eculizumab has the potential to significantly change the immunosuppressive approach in gMG offering the opportunity to avoid or delay corticosteroids' use due to its speed and selective mechanism of action. Eculizumab prescription will depend on: 1. ability to modify the natural disease course; 2. sustainability in the clinical practice (cost/effectiveness ratio); 3. drug-induced AE reduction. At present we are missing a controlled study on its use as a first-line treatment. We think that immunosuppression in MG will change significantly in the next years by adopting more focused 'Precision Medicine' approaches, and Eculizumab seems to satisfy such a promise.


Subject(s)
Antibodies, Monoclonal, Humanized/therapeutic use , Complement Inactivating Agents/therapeutic use , Myasthenia Gravis/drug therapy , Antibodies, Monoclonal, Humanized/immunology , Antibodies, Monoclonal, Humanized/metabolism , Clinical Trials as Topic , Complement C5/immunology , Complement Inactivating Agents/immunology , Complement Inactivating Agents/metabolism , Half-Life , Humans , Myasthenia Gravis/pathology , Treatment Outcome
16.
Cells ; 9(6)2020 06 23.
Article in English | MEDLINE | ID: mdl-32585971

ABSTRACT

Laminopathies are a wide and heterogeneous group of rare human diseases caused by mutations of the LMNA gene or related nuclear envelope genes. The variety of clinical phenotypes and the wide spectrum of histopathological changes among patients carrying an identical mutation in the LMNA gene make the prognostic process rather difficult, and classical genetic screens appear to have limited predictive value for disease development. The aim of this study was to evaluate whether a comprehensive profile of circulating cytokines may be a useful tool to differentiate and stratify disease subgroups, support clinical follow-ups and contribute to new therapeutic approaches. Serum levels of 51 pro- and anti-inflammatory molecules, including cytokines, chemokines and growth factors, were quantified by a Luminex multiple immune-assay in 53 patients with muscular laminopathy (Musc-LMNA), 10 with non-muscular laminopathy, 22 with other muscular disorders and in 35 healthy controls. Interleukin-17 (IL-17), granulocyte colony-stimulating factor (G-CSF) and transforming growth factor beta (TGF-ß2) levels significantly discriminated Musc-LMNA from controls; interleukin-1ß (IL-1ß), interleukin-4 (IL-4) and interleukin-8 (IL-8) were differentially expressed in Musc-LMNA patients compared to those with non-muscular laminopathies, whereas IL-17 was significantly higher in Musc-LMNA patients with muscular and cardiac involvement. These findings support the hypothesis of a key role of the immune system in Musc-LMNA and emphasize the potential use of cytokines as biomarkers for these disorders.


Subject(s)
Biomarkers/blood , Cytokines/metabolism , Laminopathies/diagnosis , Muscle, Striated/pathology , Muscular Diseases/diagnosis , Adult , Female , Humans , Laminopathies/pathology , Male , Muscular Diseases/pathology
17.
Front Immunol ; 11: 142, 2020.
Article in English | MEDLINE | ID: mdl-32210951

ABSTRACT

Toll-like receptor (TLR)-mediated innate immune responses are critically involved in the pathogenesis of myasthenia gravis (MG), an autoimmune disorder affecting neuromuscular junction mainly mediated by antiacetylcholine receptor antibodies. Considerable evidence indicate that uncontrolled TLR activation and chronic inflammation significantly contribute to hyperplastic changes and germinal center (GC) formation in the MG thymus, ultimately leading to autoantibody production and autoimmunity. miR-146a is a key modulator of innate immunity, whose dysregulation has been associated with autoimmune diseases. It acts as inhibitor of TLR pathways, mainly by targeting the nuclear factor kappa B (NF-κB) signaling transducers, interleukin 1 receptor associated kinase 1 (IRAK1) and tumor necrosis factor (TNF) receptor associated factor 6 (TRAF6); miR-146a is also able to target c-REL, inducible T-cell costimulator (ICOS), and Fas cell surface death receptor (FAS), known to regulate B-cell function and GC response. Herein, we investigated the miR-146a contribution to the intrathymic MG pathogenesis. By real-time PCR, we found that miR-146a expression was significantly downregulated in hyperplastic MG compared to control thymuses; contrariwise, IRAK1, TRAF6, c-REL, and ICOS messenger RNA (mRNA) levels were upregulated and negatively correlated with miR-146a levels. Microdissection experiments revealed that miR-146a deficiency in hyperplastic MG thymuses was not due to GCs, but restricted to the GC-surrounding medulla, characterized by IRAK1 overexpression. We also showed higher c-REL and ICOS mRNA levels, and lower FAS mRNA levels, in GCs than in the remaining medulla, according to the contribution of these molecules in GC formation. By double immunofluorescence, an increased proportion of IRAK1-expressing dendritic cells and macrophages was found in hyperplastic MG compared to control thymuses, along with GC immunoreactivity for c-REL. Interestingly, in corticosteroid-treated MG patients intrathymic miR-146a and mRNA target levels were comparable to those of controls, suggesting that immunosuppressive therapy may restore the microRNA (miRNA) levels. Indeed, an effect of prednisone on miR-146a expression was demonstrated in vitro on peripheral blood cells. Serum miR-146a levels were lower in MG patients compared to controls, indicating dysregulation of the circulating miRNA. Our overall findings strongly suggest that defective miR-146a expression could contribute to persistent TLR activation, lack of inflammation resolution, and hyperplastic changes in MG thymuses, thus linking TLR-mediated innate immunity to B-cell-mediated autoimmunity. Furthermore, they unraveled a new mechanism of action of corticosteroids in inducing control of autoimmunity in MG via miR-146a.


Subject(s)
Adrenal Cortex Hormones/therapeutic use , Autoimmunity , Immunity, Innate , MicroRNAs/genetics , Myasthenia Gravis/drug therapy , Myasthenia Gravis/immunology , Prednisone/pharmacology , Prednisone/therapeutic use , Thymus Gland/immunology , Adolescent , Adrenal Cortex Hormones/pharmacology , Adult , B-Lymphocytes/immunology , Cells, Cultured , Child , Female , Gene Expression Regulation, Neoplastic/drug effects , Germinal Center/drug effects , Germinal Center/immunology , Humans , Male , MicroRNAs/blood , Middle Aged , Myasthenia Gravis/blood , RNA, Messenger/genetics , Signal Transduction/drug effects , Toll-Like Receptors/metabolism , Treatment Outcome , Young Adult
18.
Neuroscience ; 416: 88-99, 2019 09 15.
Article in English | MEDLINE | ID: mdl-31400485

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease affecting the corticospinal tract and leading to motor neuron death. According to a recent study, magnetic resonance imaging-visible changes suggestive of neurodegeneration seem absent in the motor cortex of G93A-SOD1 ALS mice. However, it has not yet been ascertained whether the cortical neural activity is intact, or alterations are present, perhaps even from an early stage. Here, cortical neurons from this model were isolated at post-natal day 1 and cultured on multielectrode arrays. Their activity was studied with a comprehensive pool of neurophysiological analyses probing excitability, criticality and network architecture, alongside immunocytochemistry and molecular investigations. Significant hyperexcitability was visible through increased network firing rate and bursting, whereas topological changes in the synchronization patterns were apparently absent. The number of dendritic spines was increased, accompanied by elevated transcriptional levels of the DLG4 gene, NMDA receptor 1 and the early pro-apoptotic APAF1 gene. The extracellular Na+, Ca2+, K+ and Cl- concentrations were elevated, pointing to perturbations in the culture micro-environment. Our findings highlight remarkable early changes in ALS cortical neuron activity and physiology. These changes suggest that the causative factors of hyperexcitability and associated toxicity could become established much earlier than the appearance of disease symptoms, with implications for the discovery of new hypothetical therapeutic targets.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Motor Cortex/pathology , Motor Neurons/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Cell Death/physiology , Disease Models, Animal , Mice, Transgenic , Neurodegenerative Diseases/pathology , Superoxide Dismutase/metabolism
19.
Pharmacol Res ; 148: 104388, 2019 10.
Article in English | MEDLINE | ID: mdl-31401213

ABSTRACT

Myasthenia gravis (MG) is an autoimmune disorder affecting neuromuscular transmission currently treated with chronic immunosuppression. Inter-subject variation in treatment response and side effects highlight the need for personalized therapies by identification of biomarkers predictive of drug efficacy in individual patients, still lacking in MG. MicroRNAs (miRNAs) play a key role in immune response and drug metabolism modulation. This study, part of an Italian-Israeli collaborative project, aimed to identify specific miRNAs as biomarkers associated with immunosuppressive treatment response in MG patients. Whole miRNome sequencing, followed by miRNA validation by real-time PCR, was performed in peripheral blood from Italian MG patients (n = 40) classified as responder and non-responder to immunosuppressive therapies. MiRNA sequencing identified 41 miRNAs differentially expressed in non-responder compared to responder Italian MG patients. Validation phase pointed out three miRNAs, miR-323b-3p, -409-3p, and -485-3p, clustered on chromosome 14q32.31, the levels of which were significantly decreased in non-responder versus responder patients, whereas miR-181d-5p and -340-3p showed an opposite trend. ROC curve analysis showed sensitivity and specificity performance results indicative of miR-323b-3p, -409-3p, and -485-3p predictive value for responsiveness to immunosuppressive drugs in MG. Validated miRNAs were further analyzed in blood from responder and non-responder MG patients of the Israeli population (n = 33), confirming a role for miR-323b-3p, -409-3p, -485-3p, -181d-5p and -340-3p as biomarkers of drug efficacy. Gene Ontology enrichment analysis, mRNA target prediction, and in silico modeling for function of the identified miRNAs disclosed functional involvement of the five miRNAs, and their putative target genes, in both immune (i.e. neurotrophin TRK and Fc-epsilon receptor signaling pathways) and drug metabolism processes. Our overall findings thus revealed a blood "miR-323b-3p, -409-3p, -485-3p, -181d-5p, and -340-3p" signature associated with drug responsiveness in MG patients. Its identification sets the basis for precision medicine approaches based on "pharmacomiRs" as biomarkers of drug responsiveness in MG, promising to improve therapeutic success in a cost/effective manner.


Subject(s)
MicroRNAs/genetics , Myasthenia Gravis/genetics , Adult , Biomarkers/blood , Female , Gene Expression Profiling/methods , Humans , Male , Middle Aged , Precision Medicine , RNA, Messenger/genetics , ROC Curve , Signal Transduction/genetics
20.
Curr Opin Rheumatol ; 31(6): 623-633, 2019 11.
Article in English | MEDLINE | ID: mdl-31385879

ABSTRACT

PURPOSE OF REVIEW: This article provides an update on the most recent advances in diagnostic procedures and therapeutic approaches for myasthenia gravis, spanning from autoantibody and neuroelectrophysiological tests as diagnostic tools, to innovative and promising treatments based on biological drugs. RECENT FINDINGS: Novel studies performed by cell-based assays (CBAs) indicate an improvement in the chance of identifying serum autoantibodies in myasthenic patients. Clinical trials on the use of biological drugs were recently concluded, providing important data on safety and efficacy of eculizumab, efgartigimod and amifampridine phosphate: the first, a complement blocker, showed long-term safety and efficacy in acetylcholine receptor (AChR)-positive myasthenic patients with refractory generalized disease; the second, the neonatal Fc receptor blocker, was well tolerated and clinically effective in both AChR-specific and muscle-specific kinase receptor (MuSK)-positive patients; the third, a blocker of presynaptic potassium channels, was found to be well tolerated and effective in MuSK-positive patients. SUMMARY: CBAs can lead to a significant reduction of seronegative patients, improving myasthenia gravis diagnostic process. New biological drugs offer innovative approaches to treat myasthenic patients with generalized disease, promising to change the paradigm of treatment and to significantly enhance therapeutic success within a precision medicine framework.


Subject(s)
Autoantibodies/blood , Biological Factors/therapeutic use , Electromyography/methods , Immunosuppressive Agents/therapeutic use , Myasthenia Gravis/diagnosis , Autoantibodies/immunology , Humans , Myasthenia Gravis/blood , Myasthenia Gravis/drug therapy , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...