Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
One Health ; 15: 100450, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36532671

ABSTRACT

Rabies is an important zoonosis in Ethiopia, where lack of research is cited as a constraint to implementation of the national rabies control strategy. We conducted a systematic review of publications and theses on rabies in Ethiopia, to document research gaps and areas of knowledge saturation in relation to geographic and species focus, methods and findings. We also examined funding sources and extent of local researcher participation. After screening titles and abstracts, the full text of 119 publications was included in data extraction. More than 40% of publications involved data collection in one region (Oromia); no publications reported findings from Benishangul-Gumuz, Dire Dawa or Gambella. Dogs and wildlife (especially Canis simensis) were the focus of research in 45% and 24% publications, respectively. Descriptive epidemiology (N = 39 publications), ethno-medicine/-pharmacology (N = 17) and knowledge, attitude, and practice surveys (KAP, N = 15) were amongst the most common study designs, while studies involving economic methods (N = 3) and experimental epidemiology to test interventions (N = 3) were under-represented. Incidence surveys (N = 9) commonly used post-exposure prophylaxis administration in humans as a proxy for exposure without laboratory confirmation of the rabies status of the animal. KAP surveys tended to highlight reasonable levels of knowledge of rabies and poor practices, including overreliance on medicinal plants. International researchers were the first or last (senior) author on 42% and 58% of publications, respectively, most of which were funded by international organizations (45/72 publications reporting funding source). Based on this systematic review, we suggest more applied research is needed to address gaps in laboratory surveillance (including in humans, domestic and wild animals); identify effective ways to overcome socio-cultural and other barriers to accessing effective rabies treatments; inform best approaches to incentivizing mass dog vaccination programs; and generate local estimates of the cost-benefit and cost-effectiveness of different control strategies to improve financing and political buy-in for rabies control in Ethiopia.

2.
PLoS One ; 16(11): e0259874, 2021.
Article in English | MEDLINE | ID: mdl-34784379

ABSTRACT

The World Health Organization (WHO) declared COVID-19 a pandemic on March 11, 2020 and by November 14, 2020 there were 53.3M confirmed cases and 1.3M reported deaths in the world. In the same period, Ethiopia reported 102K cases and 1.5K deaths. Effective public health preparedness and response to COVID-19 requires timely projections of the time and size of the peak of the outbreak. Currently, Ethiopia under the COVAX facility has begun vaccinating high risk populations but due to vaccine supply shortages and the absence of an effective treatment, the implementation of NPIs (non-pharmaceutical interventions), like hand washing, wearing face coverings or social distancing, still remain the most effective methods of controlling the pandemic as recommended by WHO. This study proposes a modified Susceptible Exposed Infected and Recovered (SEIR) model to predict the number of COVID-19 cases at different stages of the disease under the implementation of NPIs at different adherence levels in both urban and rural settings of Ethiopia. To estimate the number of cases and their peak time, 30 different scenarios were simulated. The results indicated that the peak time of the pandemic is different in urban and rural populations of Ethiopia. In the urban population, under moderate implementation of three NPIs the pandemic will be expected to reach its peak in December, 2020 with 147,972 cases, of which 18,100 are symptomatic and 957 will require admission to an Intensive Care Unit (ICU). Among the implemented NPIs, increasing the coverage of wearing masks by 10% could reduce the number of new cases on average by one-fifth in urban-populations. Varying the coverage of wearing masks in rural populations minimally reduces the number of cases. In conclusion, the models indicate that the projected number of hospital cases during the peak time is higher than the Ethiopian health system capacity. To contain symptomatic and ICU cases within the health system capacity, the government should pay attention to the strict implementation of the existing NPIs or impose additional public health measures.


Subject(s)
COVID-19 , Pandemics , Ethiopia , Masks , Quarantine
3.
PLoS Negl Trop Dis ; 15(7): e0009607, 2021 07.
Article in English | MEDLINE | ID: mdl-34270551

ABSTRACT

BACKGROUND: One Health is particularly relevant to the Horn of Africa where many people's livelihoods are highly dependent on livestock and their shared environment. In this context, zoonoses may have a dramatic impact on both human and animal health, but also on country economies. This scoping review aimed to characterise and evaluate the nature of zoonotic disease research in the Horn region. Specifically, it addressed the following questions: (i) what specific zoonotic diseases have been prioritised for research, (ii) what data have been reported (human, animal or environment), (iii) what methods have been applied, and (iv) who has been doing the research? METHODOLOGY/PRINCIPAL FINDINGS: We used keyword combinations to search online databases for peer-reviewed papers and theses. Screening and data extraction (disease, country, domain and method) was performed using DistillerSR. A total of 2055 studies focusing on seven countries and over 60 zoonoses were included. Brucellosis attracted the highest attention in terms of research while anthrax, Q fever and leptospirosis have been comparatively under-studied. Research efforts did not always align with zoonoses priorities identified at national levels. Despite zoonoses being a clear target for 'One Health' research, a very limited proportion of studies report data on the three domains of human, animal and environment. Descriptive and observational epidemiological studies were dominant and only a low proportion of publications were multidisciplinary. Finally, we found that a minority of international collaborations were between Global South countries with a high proportion of authors having affiliations from outside the Horn of Africa. CONCLUSIONS/SIGNIFICANCE: There is a growing interest in zoonoses research in the Horn of Africa. Recommendations arising from this scoping review include: (i) ensuring zoonoses research aligns with national and global research agendas; (ii) encouraging researchers to adopt a holistic, transdisciplinary One Health approach following high quality reporting standards (COHERE, PRISMA, etc.); and (iii) empowering local researchers supported by regional and international partnerships to engage in zoonoses research.


Subject(s)
Research/history , Zoonoses/epidemiology , Africa South of the Sahara/epidemiology , Animals , History, 20th Century , History, 21st Century , Humans
4.
One Health ; 12: 100221, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33558848

ABSTRACT

Approximately a year into the COVID-19 pandemic caused by the SARS-CoV-2 virus, many countries have seen additional "waves" of infections, especially in the temperate northern hemisphere. Other vulnerable regions, such as South Africa and several parts of South America have also seen cases rise, further impacting local economies and livelihoods. Despite substantial research efforts to date, it remains unresolved as to whether COVID-19 transmission has the same sensitivity to climate observed for other common respiratory viruses such as seasonal influenza. Here, we look for empirical evidence of seasonality using a robust estimation framework. For 359 large cities across the world, we estimated the basic reproduction number (R0) using logistic growth curves fitted to cumulative case data. We then assess evidence for association with climatic variables through ordinary least squares (OLS) regression. We find evidence of seasonality, with lower R0 within cities experiencing greater surface radiation (coefficient = -0.005, p < 0.001), after adjusting for city-level variation in demographic and disease control factors. Additionally, we find association between R0 and temperature during the early phase of the epidemic in China. However, climatic variables had much weaker explanatory power compared to socioeconomic and disease control factors. Rates of transmission and health burden of the continuing pandemic will be ultimately determined by population factors and disease control policies.

5.
BMC Vet Res ; 15(1): 295, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31412882

ABSTRACT

In recent years, outbreaks caused by multi-host pathogens (MHP) have posed a serious challenge to public and animal health authorities. The frequent implication of wildlife in such disease systems and a lack of guidelines for mitigating these diseases within wild animal populations partially explain why the outbreaks are particularly challenging. To face these challenges, the French Ministry of Agriculture launched a multi-disciplinary group of experts that set out to discuss the main wildlife specific concepts in the management of MHP disease outbreaks and how to integrate wildlife in the disease management process.This position paper structures the primary specific concepts of wildlife disease management, as identified by the working group. It is designed to lay out these concepts for a wide audience of public and/or animal health officers who are not necessarily familiar with wildlife diseases. The group's discussions generated a possible roadmap for the management of MHP diseases. This roadmap is presented as a cycle for which the main successive step are: step 1-descriptive studies and monitoring; step 2-risk assessment; step 3-management goals; step 4-management actions and step 5-assessment of the management plan. In order to help choose the most adapted management actions for all involved epidemiological units, we integrated a decision-making framework (presented as a spreadsheet). This tool and the corresponding guidelines for disease management are designed to be used by public and health authorities when facing MHP disease outbreaks. These proposals are meant as an initial step towards a harmonized transboundary outbreak response framework that integrates current scientific understanding adapted to practical intervention.


Subject(s)
Animals, Wild , Host Specificity , Animals , Disease Outbreaks , Risk Assessment
6.
Front Vet Sci ; 5: 262, 2018.
Article in English | MEDLINE | ID: mdl-30430112

ABSTRACT

Mycobacterium bovis infection was first described in free-ranging wildlife in France in 2001, with subsequent detection in hunter-harvested ungulates and badgers in areas where outbreaks of bovine tuberculosis (TB) were also detected in cattle. Increasing concerns regarding TB in wildlife led the French General Directorate for Food (DGAL) and the main institutions involved in animal health and wildlife management, to establish a national surveillance system for TB in free-ranging wildlife. This surveillance system is known as "Sylvatub." The system coordinates the activities of various national and local partners. The main goal of Sylvatub is to detect and monitor M. bovis infection in wildlife through a combination of passive and active surveillance protocols adapted to the estimated risk level in each area of the country. Event-base surveillance relies on M. bovis identification (molecular detection) (i) in gross lesions detected in hunter-harvested ungulates, (ii) in ungulates that are found dead or dying, and (iii) in road-killed badgers. Additional targeted surveillance in badgers, wild boars and red deer is implemented on samples from trapped or hunted animals in at-risk areas. With the exception of one unexplained case in a wild boar, M. bovis infection in free-living wildlife has always been detected in the vicinity of cattle TB outbreaks with the same genotype of the infectious M. bovis strains. Since 2012, M. bovis was actively monitored in these infected areas and detected mainly in badgers and wild boars with apparent infection rates of 4.57-5.14% and 2.37-3.04%, respectively depending of the diagnostic test used (culture or PCR), the period and according to areas. Sporadic infection has also been detected in red deer and roe deer. This surveillance has demonstrated that M. bovis infection, in different areas of France, involves a multi-host system including cattle and wildlife. However, infection rates are lower than those observed in badgers in the United Kingdom or in wild boars in Spain.

7.
PLoS Negl Trop Dis ; 11(7): e0005767, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28732006

ABSTRACT

Rift Valley fever (RVF) is a major zoonotic and arboviral hemorrhagic fever. The conditions leading to RVF epidemics are still unclear, and the relative role of climatic and anthropogenic factors may vary between ecosystems. Here, we estimate the most likely scenario that led to RVF emergence on the island of Mayotte, following the 2006-2007 African epidemic. We developed the first mathematical model for RVF that accounts for climate, animal imports and livestock susceptibility, which is fitted to a 12-years dataset. RVF emergence was found to be triggered by the import of infectious animals, whilst transmissibility was approximated as a linear or exponential function of vegetation density. Model forecasts indicated a very low probability of virus endemicity in 2017, and therefore of re-emergence in a closed system (i.e. without import of infected animals). However, the very high proportion of naive animals reached in 2016 implies that the island remains vulnerable to the import of infectious animals. We recommend reinforcing surveillance in livestock, should RVF be reported is neighbouring territories. Our model should be tested elsewhere, with ecosystem-specific data.


Subject(s)
Livestock/virology , Models, Theoretical , Rift Valley Fever/epidemiology , Rift Valley Fever/transmission , Rift Valley fever virus/isolation & purification , Animals , Bayes Theorem , Comoros/epidemiology , Epidemics/statistics & numerical data , Humans
8.
PLoS Negl Trop Dis ; 10(6): e0004783, 2016 06.
Article in English | MEDLINE | ID: mdl-27331402

ABSTRACT

Rift Valley fever (RVF) is a zoonotic arboviral disease that is a threat to human health, animal health and production, mainly in Sub-Saharan Africa. RVF virus dynamics have been poorly studied due to data scarcity. On the island of Mayotte in the Indian Ocean, off the Southeastern African coast, RVF has been present since at least 2004. Several retrospective and prospective serological surveys in livestock have been conducted over eleven years (2004-15). These data are collated and presented here. Temporal patterns of seroprevalence were plotted against time, as well as age-stratified seroprevalence. Results suggest that RVF was already present in 2004-07. An epidemic occurred between 2008 and 2010, with IgG and IgM peak annual prevalences of 36% in 2008-09 (N = 142, n = 51, 95% CI [17-55]) and 41% (N = 96, n = 39, 95% CI [25-56]), respectively. The virus seems to be circulating at a low level since 2011, causing few new infections. In 2015, about 95% of the livestock population was susceptible (IgG annual prevalence was 6% (N = 584, n = 29, 95% CI [3-10])). Monthly rainfall varied a lot (2-540mm), whilst average temperature remained high with little variation (about 25-30°C). This large dataset collected on an insular territory for more than 10 years, suggesting a past epidemic and a current inter-epidemic period, represents a unique opportunity to study RVF dynamics. Further data collection and modelling work may be used to test different scenarios of animal imports and rainfall pattern that could explain the observed epidemiological pattern and estimate the likelihood of a potential re-emergence.


Subject(s)
Cattle Diseases/virology , Goat Diseases/virology , Rift Valley Fever/epidemiology , Animals , Cattle , Cattle Diseases/epidemiology , Comoros/epidemiology , Goat Diseases/epidemiology , Goats , Humans , Retrospective Studies
9.
PLoS One ; 10(7): e0130838, 2015.
Article in English | MEDLINE | ID: mdl-26147799

ABSTRACT

Rift Valley fever (RVF) is a zoonotic vector-borne disease causing abortion storms in cattle and human epidemics in Africa. Our aim was to evaluate RVF persistence in a seasonal and isolated population and to apply it to Mayotte Island (Indian Ocean), where the virus was still silently circulating four years after its last known introduction in 2007. We proposed a stochastic model to estimate RVF persistence over several years and under four seasonal patterns of vector abundance. Firstly, the model predicted a wide range of virus spread patterns, from obligate persistence in a constant or tropical environment (without needing vertical transmission or reintroduction) to frequent extinctions in a drier climate. We then identified for each scenario of seasonality the parameters that most influenced prediction variations. Persistence was sensitive to vector lifespan and biting rate in a tropical climate, and to host viraemia duration and vector lifespan in a drier climate. The first epizootic peak was primarily sensitive to viraemia duration and thus likely to be controlled by vaccination, whereas subsequent peaks were sensitive to vector lifespan and biting rate in a tropical climate, and to host birth rate and viraemia duration in arid climates. Finally, we parameterized the model according to Mayotte known environment. Mosquito captures estimated the abundance of eight potential RVF vectors. Review of RVF competence studies on these species allowed adjusting transmission probabilities per bite. Ruminant serological data since 2004 and three new cross-sectional seroprevalence studies are presented. Transmission rates had to be divided by more than five to best fit observed data. Five years after introduction, RVF persisted in more than 10% of the simulations, even under this scenario of low transmission. Hence, active surveillance must be maintained to better understand the risk related to RVF persistence and to prevent new introductions.


Subject(s)
Disease Vectors , Rift Valley Fever/epidemiology , Seasons , Stochastic Processes , Tropical Climate , Animals , Endemic Diseases , France/epidemiology , Humans , Rift Valley Fever/transmission , Seroepidemiologic Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...