Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Language
Publication year range
1.
Mar Genomics ; 45: 21-27, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30559036

ABSTRACT

The present study addresses the microbiome of the first whale fall (YOKO 16) that has been described in the deep sea in the southern Atlantic Ocean (São Paulo Plateau; 4204 m depth), in terms of its metabolic uniqueness. Sets of ten thousand protein sequences from YOKO 16 and 29 public domain metagenomes (SRA and GenBank databases) that represent various marine, terrestrial and gut-associated microbial communities were analyzed. The determination of protein functionality, based on the KAAS server, indicated that the YOKO 16 microbiome has industrially-relevant proteins, such as proteases and lipases, that have low similarity (~50%) with previously-described enzymes. The amino acid usage in the YOKO 16 protein sequences (based on blastp and Clustal analysis) revealed a pattern of preference similar to that of extremophiles, with an increased usage of polar, charged and acidic amino acids and a decreased usage of nonpolar residues. We concluded that the targeted microbiome is of potential biotechnological use, which justifies the allocation of resources for the discovery of enzymes in deep-sea whale fall communities.


Subject(s)
Bacterial Proteins/genetics , Metagenome , Microbiota , Selection, Genetic , Whales/microbiology , Animals , Atlantic Ocean , Bacterial Proteins/metabolism
2.
Genome Announc ; 1(3)2013 May 02.
Article in English | MEDLINE | ID: mdl-23640380

ABSTRACT

Bacillus stratosphericus LAMA 585 was isolated from the Mid-Atlantic-Ridge seafloor (5,500-m depth). This bacterium presents the capacity for cellulase, xylanase, and lipase production when growing aerobically in marine-broth media. Genes involved in the tolerance of oligotrophic and extreme conditions and prospection of biotechnological products were annotated in the draft genome (3.7 Mb).

3.
Springerplus ; 2(1): 127, 2013 Dec.
Article in English | MEDLINE | ID: mdl-23565357

ABSTRACT

The deep-sea environments of the South Atlantic Ocean are less studied in comparison to the North Atlantic and Pacific Oceans. With the aim of identifying the deep-sea bacteria in this less known ocean, 70 strains were isolated from eight sediment samples (depth range between 1905 to 5560 m) collected in the eastern part of the South Atlantic, from the equatorial region to the Cape Abyssal Plain, using three different culture media. The strains were classified into three phylogenetic groups, Gammaproteobacteria, Firmicutes and Actinobacteria, by the analysis of 16s rRNA gene sequences. Gammaproteobacteria and Firmicutes were the most frequently identified groups, with Halomonas the most frequent genus among the strains. Microorganisms belonging to Firmicutes were the only ones observed in all samples. Sixteen of the 41 identified operational taxonomic units probably represent new species. The presence of potentially new species reinforces the need for new studies in the deep-sea environments of the South Atlantic.

4.
Dalton Trans ; 42(19): 7059-73, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23515486

ABSTRACT

Here we present the synthesis of the dinuclear complex [Cu(II)2(L)Cl3] (1), where L is the deprotonated form of the 3-[(4,7-diisopropyl-1,4,7-triazacyclononan-1-yl)methyl]-2-hydroxy-5-methylbenzaldehyde ligand. The complex was characterized by single crystal X-ray diffraction, potentiometric titration, mass spectrometry, electrochemical and magnetic measurements, EPR, UV-Vis and IR. Complex 1 is able to increase the hydrolysis rate of the diester bis-(2,4-dinitrophenyl)phosphate (2,4-BDNPP) by a factor of 2700, and also to promote the plasmidial DNA cleavage at pH 6 and to inhibit the formazan chromophore formation in redox processes at pH 7. Using Saccharomyces cerevisiae (BY4741) as a eukaryotic cellular model, we observed that 1 presents reduced cytotoxicity. In addition, treatment of wild-type and mutant cells lacking Cu/Zn-superoxide dismutase (Sod1) and cytoplasmic catalase (Ctt1) with 1 promotes increased survival after H2O2 or menadione (O2˙(-) generator) stress, indicating that 1 might act as a Sod1 and Ctt1 mimetic. Considered together, these results support considerations regarding the dynamic behaviour of an unsymmetrical dinuclear copper(II) complex in solid state and in aqueous pH-dependent solution.


Subject(s)
Coordination Complexes/chemistry , Copper/chemistry , Heterocyclic Compounds/chemistry , Antioxidants/chemistry , Antioxidants/metabolism , Biomimetic Materials/chemical synthesis , Biomimetic Materials/metabolism , Biomimetic Materials/pharmacology , Catalysis , Coordination Complexes/metabolism , Coordination Complexes/pharmacology , Crystallography, X-Ray , DNA/chemistry , DNA/metabolism , DNA Cleavage , Hydrogen-Ion Concentration , Kinetics , Ligands , Magnetics , Molecular Conformation , Saccharomyces cerevisiae/drug effects , Superoxide Dismutase/metabolism , Temperature
5.
Inorg Chem ; 51(4): 2065-78, 2012 Feb 20.
Article in English | MEDLINE | ID: mdl-22289382

ABSTRACT

A mixed-valence complex, [Fe(III)Fe(II)L1(µ-OAc)(2)]BF(4)·H(2)O, where the ligand H(2)L1 = 2-{[[3-[((bis(pyridin-2-ylmethyl)amino)methyl)-2-hydroxy-5-methylbenzyl](pyridin-2-ylmethyl)amino]methyl]phenol}, has been studied with a range of techniques, and, where possible, its properties have been compared to those of the corresponding enzyme system purple acid phosphatase. The Fe(III)Fe(II) and Fe(III)(2) oxidized species were studied spectroelectrochemically. The temperature-dependent population of the S = 3/2 spin states of the heterovalent system, observed using magnetic circular dichroism, confirmed that the dinuclear center is weakly antiferromagnetically coupled (H = -2JS(1)·S(2), where J = -5.6 cm(-1)) in a frozen solution. The ligand-to-metal charge-transfer transitions are correlated with density functional theory calculations. The Fe(III)Fe(II) complex is electron paramagnetic resonance (EPR)-silent, except at very low temperatures (<2 K), because of the broadening caused by the exchange coupling and zero-field-splitting parameters being of comparable magnitude and rapid spin-lattice relaxation. However, a phosphate-bound Fe(III)(2) complex showed an EPR spectrum due to population of the S(tot) = 3 state (J= -3.5 cm(-1)). The phosphatase activity of the Fe(III)Fe(II) complex in hydrolysis of bis(2,4-dinitrophenyl)phosphate (k(cat.) = 1.88 × 10(-3) s(-1); K(m) = 4.63 × 10(-3) mol L(-1)) is similar to that of other bimetallic heterovalent complexes with the same ligand. Analysis of the kinetic data supports a mechanism where the initiating nucleophile in the phosphatase reaction is a hydroxide, terminally bound to Fe(III). It is interesting to note that aqueous solutions of [Fe(III)Fe(II)L1(µ-OAc)(2)](+) are also capable of protein cleavage, at mild temperature and pH conditions, thus further expanding the scope of this complex's catalytic promiscuity.


Subject(s)
Acid Phosphatase/chemistry , Ferric Compounds/chemistry , Ferrous Compounds/chemistry , Glycoproteins/chemistry , Acid Phosphatase/metabolism , Animals , Biomimetic Materials/chemistry , Biomimetic Materials/metabolism , Catalytic Domain , Cattle , Crystallography, X-Ray , Electron Spin Resonance Spectroscopy , Ferric Compounds/metabolism , Ferrous Compounds/metabolism , Glycoproteins/metabolism , Hydrolysis , Models, Molecular , Pyridines/chemistry , Pyridines/metabolism , Serum Albumin, Bovine/metabolism
6.
Electron. j. biotechnol ; 13(5): 5-6, Sept. 2010. ilus, tab
Article in English | LILACS | ID: lil-591887

ABSTRACT

Cellulase is a group of enzymes (endoglucanase, exoglucanase and beta-glucosidase) required for cellulosic feedstock hydrolysis during bioethanol production. The use of recombinant cellulase is a strategy to reduce the enzyme cost. In this context, the present work describes the construction of a cellulase expression vector (pEglABglA), which allowed constitutive co-expression of endoglucanase A (EglA) from an endophytic Bacillus pumilus and the hyperthermophilic beta-glucosidase A (BglA) from Fervidobacterium sp. in Escherichia coli. When compared to the non-modified strain DH5 alpha, the recombinant Escherichia coli DH5 alpha (pEglABglA) reduced fivefold the viscosity of the carboxymethylcellulose medium (CMC-M). Also, it presented almost 30-fold increase in reducing sugar released from CMC-M, enabling the recombinant strain to grow using CMC as the sole carbon and energy source. When cultivated in rich media, specific growth rates of recombinant E. coli strains BL21, JM101 and Top10 were higher than those of DH5 alpha and DH10B strains. The constructed plasmid (pEglABglA) can be used as backbone for further cellulase gene addition, which may enhance even more E. coli cellulolytic capacity and growth rate.


Subject(s)
Cellulases/metabolism , Escherichia coli/enzymology , Ethanol , Escherichia coli/growth & development , Hydrolysis , beta-Glucosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...