Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Cell Rep Methods ; 1(8)2021 12 20.
Article in English | MEDLINE | ID: mdl-35072148

ABSTRACT

Nucleic acid purification is a critical aspect of biomedical research and a multibillion-dollar industry. Here we establish sequence-selective RNA capture, release, and isolation using conformationally responsive DNA nanoswitches. We validate purification of specific RNAs ranging in size from 22 to 401 nt with up to 75% recovery and 99.98% purity in a benchtop process with minimal expense and equipment. Our method compared favorably with bead-based extraction of an endogenous microRNA from cellular total RNA, and can be programmed for multiplexed purification of multiple individual RNA targets from one sample. Coupling our approach with downstream LC/MS, we analyzed RNA modifications in 5.8S ribosomal RNA, and found 2'-O-methylguanosine, 2'-O-methyluridine, and pseudouridine in a ratio of ~1:7:22. The simplicity, low cost, and low sample requirements of our method make it suitable for easy adoption, and the versatility of the approach provides opportunities to expand the strategy to other biomolecules.


Subject(s)
DNA , RNA , Pseudouridine
2.
Sci Adv ; 6(39)2020 09.
Article in English | MEDLINE | ID: mdl-32978154

ABSTRACT

Detection of viruses is critical for controlling disease spread. Recent emerging viral threats, including Zika virus, Ebola virus, and SARS-CoV-2 responsible for coronavirus disease 2019 (COVID-19) highlight the cost and difficulty in responding rapidly. To address these challenges, we develop a platform for low-cost and rapid detection of viral RNA with DNA nanoswitches that mechanically reconfigure in response to specific viruses. Using Zika virus as a model system, we show nonenzymatic detection of viral RNA with selective and multiplexed detection between related viruses and viral strains. For clinical-level sensitivity in biological fluids, we paired the assay with sample preparation using either RNA extraction or isothermal preamplification. Our assay requires minimal laboratory infrastructure and is adaptable to other viruses, as demonstrated by quickly developing DNA nanoswitches to detect SARS-CoV-2 RNA in saliva. Further development and field implementation will improve our ability to detect emergent viral threats and ultimately limit their impact.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/diagnosis , DNA, Single-Stranded/genetics , Electrophoresis, Agar Gel/methods , Pneumonia, Viral/diagnosis , RNA, Viral/genetics , Sequence Analysis, RNA/methods , Base Sequence , COVID-19 , Cell Line, Tumor , Coronavirus Infections/virology , Dengue/diagnosis , Dengue/virology , Dengue Virus/genetics , Electrophoresis, Agar Gel/economics , Humans , Limit of Detection , Pandemics , Pneumonia, Viral/virology , SARS-CoV-2 , Saliva/virology , Sequence Analysis, RNA/economics , Zika Virus/genetics , Zika Virus Infection/diagnosis , Zika Virus Infection/virology
SELECTION OF CITATIONS
SEARCH DETAIL