Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Biochem ; 267(18): 5679-86, 2000 Sep.
Article in English | MEDLINE | ID: mdl-10971577

ABSTRACT

Recent evidence indicates that sphingolipids are produced by the heart during hypoxic stress and by blood platelets during thrombus formation. It is therefore possible that sphingolipids may influence heart cell function by interacting with G-protein-coupled receptors of the Edg family. In the present study, it was found that sphingosine 1-phosphate (Sph1P), the prototypical ligand for Edg receptors, produced calcium overload in rat cardiomyocytes. The cDNA for Edg-1 was cloned from rat cardiomyocytes and, when transfected in an antisense orientation, effectively blocked Edg-1 protein expression and reduced the Sph1P-mediated calcium deregulation. Taken together, these results demonstrate that cardiomyocytes express an extracellular lipid-sensitive receptorsystem that can respond to sphingolipid mediators. Because the major source of Sph1P is from blood platelets, we speculate that Edg-mediated Sph1P negative inotropic and cardiotoxic effects may play important roles in acute myocardial ischemia where Sph1P levels are probably elevated in response to thrombus.


Subject(s)
Calcium/metabolism , Immediate-Early Proteins/biosynthesis , Immediate-Early Proteins/genetics , Lysophospholipids , Myocardium/metabolism , Receptors, Cell Surface , Receptors, G-Protein-Coupled , Sphingosine/analogs & derivatives , Sphingosine/metabolism , Sphingosine/pharmacology , Animals , Blood Platelets/metabolism , Blotting, Western , Cardiac Pacing, Artificial , Cells, Cultured , Cloning, Molecular , DNA, Complementary/metabolism , Green Fluorescent Proteins , Ligands , Luminescent Proteins/metabolism , Oligonucleotides, Antisense/genetics , Plasmids/metabolism , Rats , Receptors, Lysophospholipid , Reverse Transcriptase Polymerase Chain Reaction , Sarcoplasmic Reticulum/metabolism , Signal Transduction , Sphingosine/genetics , Time Factors , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL