Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
ACS Biomater Sci Eng ; 9(3): 1243-1250, 2023 03 13.
Article in English | MEDLINE | ID: mdl-36749897

ABSTRACT

Materials that are evaluated for bioengineering purposes are carefully tested to evaluate cellular interactions with respect to biocompatibility and in some cases cell differentiation. A key perspective that is often considered is the ability for decellularized synthetic or natural based matrices to facilitate cell migration or tissue ingrowth. Current methods of measuring cell migration range from simple scratch assays to Boyden chamber inserts and fluorescent imaging of seeded spheroids. Many of these methods require tissue processing for histological analysis and fixing and staining for imaging, which can be difficult and dependent on the stability of the hydrogel subject. Herein we present a simple platform that can be manufactured using 3D printing and easily applied to in vitro cell culture, allowing the researcher to image live cellular migration into a cellular materials. We found this to be an adaptable, cheap, and replicable technique to evaluate cellular interaction that has applications in the research and development of hydrogels for tissue engineering purposes.


Subject(s)
Hydrogels , Tissue Engineering , Tissue Engineering/methods , Cell Culture Techniques/methods , Cell Differentiation
2.
Int J Mol Sci ; 23(3)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35163379

ABSTRACT

Non-viral gene delivery has become a popular approach in tissue engineering, as it permits the transient delivery of a therapeutic gene, in order to stimulate tissue repair. However, the efficacy of non-viral delivery vectors remains an issue. Our lab has created gene-activated scaffolds by incorporating various non-viral delivery vectors, including the glycosaminoglycan-binding enhanced transduction (GET) peptide into collagen-based scaffolds with proven osteogenic potential. A modification to the GET peptide (FLR) by substitution of arginine residues with histidine (FLH) has been designed to enhance plasmid DNA (pDNA) delivery. In this study, we complexed pDNA with combinations of FLR and FLH peptides, termed GET* nanoparticles. We sought to enhance our gene-activated scaffold platform by incorporating GET* nanoparticles into collagen-nanohydroxyapatite scaffolds with proven osteogenic capacity. GET* N/P 8 was shown to be the most effective formulation for delivery to MSCs in 2D. Furthermore, GET* N/P 8 nanoparticles incorporated into collagen-nanohydroxyapatite (coll-nHA) scaffolds at a 1:1 ratio of collagen:nanohydroxyapatite was shown to be the optimal gene-activated scaffold. pDNA encoding stromal-derived factor 1α (pSDF-1α), an angiogenic chemokine which plays a role in BMP mediated differentiation of MSCs, was then delivered to MSCs using our optimised gene-activated scaffold platform, with the aim of significantly increasing angiogenesis as an important precursor to bone repair. The GET* N/P 8 coll-nHA scaffolds successfully delivered pSDF-1α to MSCs, resulting in a significant, sustained increase in SDF-1α protein production and an enhanced angiogenic effect, a key precursor in the early stages of bone repair.


Subject(s)
Cell-Penetrating Peptides/pharmacology , Chemokine CXCL12/administration & dosage , Drug Delivery Systems , Neovascularization, Physiologic , Tissue Engineering , Tissue Scaffolds/chemistry , Transcriptional Activation , Animals , Biocompatible Materials/pharmacology , Chemokine CXCL12/pharmacology , Collagen/chemistry , DNA/chemistry , Durapatite/chemistry , Endothelial Progenitor Cells/metabolism , Glycosaminoglycans/chemistry , Nanoparticles , Neovascularization, Physiologic/drug effects , Plasmids/chemistry , Rats, Sprague-Dawley , Transcriptional Activation/drug effects , Transfection
3.
J Cell Biol ; 220(11)2021 11 01.
Article in English | MEDLINE | ID: mdl-34546352

ABSTRACT

Entosis is a form of nonphagocytic cell-in-cell (CIC) interaction where a living cell enters into another. Tumors show evidence of entosis; however, factors controlling entosis remain to be elucidated. Here, we find that besides inducing apoptosis, TRAIL signaling is a potent activator of entosis in colon cancer cells. Initiation of both apoptosis and entosis requires TRAIL receptors DR4 and DR5; however, induction of apoptosis and entosis diverges at caspase-8 as its structural presence is sufficient for induction of entosis but not apoptosis. Although apoptosis and entosis are morphologically and biochemically distinct, knockout of Bax and Bak, or inhibition of caspases, also inhibits entotic cell death and promotes survival and release of inner cells. Analysis of colorectal cancer tumors reveals a significant association between TRAIL signaling and CIC structures. Finally, the presence of CIC structures in the invasive front regions of colorectal tumors shows a strong correlation with adverse patient prognosis.


Subject(s)
Colonic Neoplasms/metabolism , Entosis/physiology , Signal Transduction/physiology , TNF-Related Apoptosis-Inducing Ligand/metabolism , Apoptosis/physiology , Apoptosis Regulatory Proteins/metabolism , Caspase 8/metabolism , Caspases/metabolism , Cell Death/physiology , Cell Line, Tumor , HCT116 Cells , Humans , Membrane Glycoproteins/metabolism , Receptors, TNF-Related Apoptosis-Inducing Ligand/metabolism , Tumor Necrosis Factor-alpha/metabolism
4.
Mater Sci Eng C Mater Biol Appl ; 128: 112340, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34474890

ABSTRACT

Mechanical robustness is an essential consideration in the development of hydrogel platforms for bone regeneration, and despite significant advances in the field of injectable hydrogels, many fail in this regard. Inspired by the mechanical properties of carboxylated single wall carbon nanotubes (COOH-SWCNTs) and the biological advantages of natural polymers, COOH-SWCNTs were integrated into chitosan and collagen to formulate mechanically robust, injectable and thermoresponsive hydrogels with interconnected molecular structure for load-bearing applications. This study presents a complete characterisation of the structural and biological properties, and mechanism of gelation of these novel formulated hydrogels. Results demonstrate that ß-glycerophosphate (ß-GP) and temperature play important roles in attaining gelation at physiological conditions, and the integration with COOH-SWCNTs significantly changed the structural morphology of the hydrogels to a more porous and aligned network. This led to a crystalline structure and significantly increased the mechanical strength of the hydrogels from kPa to MPa, which is closer to the mechanical strength of the bone. Moreover, increased osteoblast proliferation and rapid adsorption of hydroxyapatite on the surface of the hydrogels indicates increased bioactivity with addition of COOH-SWCNTs. Therefore, these nano-engineered hydrogels are expected to have wide utility in the area of bone tissue engineering and regenerative medicine.


Subject(s)
Chitosan , Nanotubes, Carbon , Collagen , Hydrogels , Tissue Engineering
5.
Mol Ther ; 29(6): 2041-2052, 2021 06 02.
Article in English | MEDLINE | ID: mdl-33609732

ABSTRACT

Oligonucleotide therapies offer precision treatments for a variety of neurological diseases, including epilepsy, but their deployment is hampered by the blood-brain barrier (BBB). Previous studies showed that intracerebroventricular injection of an antisense oligonucleotide (antagomir) targeting microRNA-134 (Ant-134) reduced evoked and spontaneous seizures in animal models of epilepsy. In this study, we used assays of serum protein and tracer extravasation to determine that BBB disruption occurring after status epilepticus in mice was sufficient to permit passage of systemically injected Ant-134 into the brain parenchyma. Intraperitoneal and intravenous injection of Ant-134 reached the hippocampus and blocked seizure-induced upregulation of miR-134. A single intraperitoneal injection of Ant-134 at 2 h after status epilepticus in mice resulted in potent suppression of spontaneous recurrent seizures, reaching a 99.5% reduction during recordings at 3 months. The duration of spontaneous seizures, when they occurred, was also reduced in Ant-134-treated mice. In vivo knockdown of LIM kinase-1 (Limk-1) increased seizure frequency in Ant-134-treated mice, implicating de-repression of Limk-1 in the antagomir mechanism. These studies indicate that systemic delivery of Ant-134 reaches the brain and produces long-lasting seizure-suppressive effects after systemic injection in mice when timed with BBB disruption and may be a clinically viable approach for this and other disease-modifying microRNA therapies.


Subject(s)
Antagomirs/genetics , Blood-Brain Barrier/metabolism , Epilepsy/genetics , Epilepsy/therapy , Animals , Antagomirs/administration & dosage , Blood-Brain Barrier/pathology , Disease Management , Disease Models, Animal , Disease Susceptibility , Gene Expression Regulation , Gene Silencing , Gene Transfer Techniques , Genetic Predisposition to Disease , Genetic Therapy , Mice , MicroRNAs/genetics , RNA Interference , Treatment Outcome
6.
Int J Mol Sci ; 21(23)2020 Dec 03.
Article in English | MEDLINE | ID: mdl-33287382

ABSTRACT

Microparticles are sub-micron, membrane-bound particles released from virtually all cells and which are present in the circulation. In several autoimmune disorders their amount and composition in the circulation is altered. Microparticle surface protein expression has been explored as a differentiating tool in autoimmune disorders where the clinical pictures can overlap. Here, we examine the utility of a novel lipid-based marker-microparticle cholesterol, present in all microparticles regardless of cellular origin-to distinguish between rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). We first isolated a series of microparticle containing lipoprotein deficient fractions from patient and control plasma. There were no significant differences in the size, structure or protein content of microparticles isolated from each group. Compared to controls, both patient groups contained significantly greater amounts of platelet and endothelial cell-derived microparticles. The cholesterol content of microparticle fractions isolated from RA patients was significantly greater than those from either SLE patients or healthy controls. Our data indicate that circulating non-lipoprotein microparticle cholesterol, which may account for 1-2% of measured cholesterol in patient samples, may represent a novel differentiator of disease, which is independent of cellular origin.


Subject(s)
Arthritis, Rheumatoid/metabolism , Cell-Derived Microparticles/metabolism , Cholesterol/metabolism , Lupus Erythematosus, Systemic/metabolism , Adult , Aged , Arthritis, Rheumatoid/etiology , Biomarkers , Biophysical Phenomena , Cell-Derived Microparticles/chemistry , Cholesterol/chemistry , Female , Humans , Immunophenotyping , Lupus Erythematosus, Systemic/etiology , Male , Middle Aged
7.
Pharmaceutics ; 12(12)2020 Dec 16.
Article in English | MEDLINE | ID: mdl-33339452

ABSTRACT

Nonviral vectors offer a safe alternative to viral vectors for gene therapy applications, albeit typically exhibiting lower transfection efficiencies. As a result, there remains a significant need for the development of a nonviral delivery system with low cytotoxicity and high transfection efficacy as a tool for safe and transient gene delivery. This study assesses MgAl-NO3 layered double hydroxide (LDH) as a nonviral vector to deliver nucleic acids (pDNA, miRNA and siRNA) to mesenchymal stromal cells (MSCs) in 2D culture and using a 3D tissue engineering scaffold approach. Nanoparticles were formulated by complexing LDH with pDNA, microRNA (miRNA) mimics and inhibitors, and siRNA at varying mass ratios of LDH:nucleic acid. In 2D monolayer, pDNA delivery demonstrated significant cytotoxicity issues, and low cellular transfection was deemed to be a result of the poor physicochemical properties of the LDH-pDNA nanoparticles. However, the lower mass ratios required to successfully complex with miRNA and siRNA cargo allowed for efficient delivery to MSCs. Furthermore, incorporation of LDH-miRNA nanoparticles into collagen-nanohydroxyapatite scaffolds resulted in successful overexpression of miRNA in MSCs, demonstrating the development of an efficacious miRNA delivery platform for gene therapy applications in regenerative medicine.

8.
Cancer Res ; 80(22): 5076-5088, 2020 11 15.
Article in English | MEDLINE | ID: mdl-33004351

ABSTRACT

Approximately 70% of breast cancers express estrogen receptor α (ERα) and depend on this key transcriptional regulator for proliferation and differentiation. While patients with this disease can be treated with targeted antiendocrine agents, drug resistance remains a significant issue, with almost half of patients ultimately relapsing. Elucidating the mechanisms that control ERα function may further our understanding of breast carcinogenesis and reveal new therapeutic opportunities. Here, we investigated the role of deubiquitinases (DUB) in regulating ERα in breast cancer. An RNAi loss-of-function screen in breast cancer cells targeting all DUBs identified USP11 as a regulator of ERα transcriptional activity, which was further validated by assessment of direct transcriptional targets of ERα. USP11 expression was induced by estradiol, an effect that was blocked by tamoxifen and not observed in ERα-negative cells. Mass spectrometry revealed a significant change to the proteome and ubiquitinome in USP11-knockdown (KD) cells in the presence of estradiol. RNA sequencing in LCC1 USP11-KD cells revealed significant suppression of cell-cycle-associated and ERα target genes, phenotypes that were not observed in LCC9 USP11-KD, antiendocrine-resistant cells. In a breast cancer patient cohort coupled with in silico analysis of publicly available cohorts, high expression of USP11 was significantly associated with poor survival in ERα-positive (ERα+) patients. Overall, this study highlights a novel role for USP11 in the regulation of ERα activity, where USP11 may represent a prognostic marker in ERα+ breast cancer. SIGNIFICANCE: A newly identified role for USP11 in ERα transcriptional activity represents a novel mechanism of ERα regulation and a pathway to be exploited for the management of ER-positive breast cancer.


Subject(s)
Breast Neoplasms/metabolism , Deubiquitinating Enzymes/physiology , Estrogen Receptor alpha/metabolism , Thiolester Hydrolases/physiology , Trans-Activators/physiology , Breast Neoplasms/chemistry , Breast Neoplasms/mortality , Cell Line, Tumor , Deubiquitinating Enzymes/drug effects , Estradiol/pharmacology , Estrogen Antagonists/pharmacology , Estrogen Receptor alpha/genetics , Female , Gene Silencing , Genes, cdc , Humans , Phenotype , Prognosis , Proteome , Tamoxifen/pharmacology , Thiolester Hydrolases/drug effects
9.
Mater Sci Eng C Mater Biol Appl ; 114: 111022, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32993972

ABSTRACT

Impaired wound healing of diabetic foot ulcers has been linked to high MMP-9 levels at the wound site. Strategies aimed at the simultaneous downregulation of the MMP-9 level in situ and the regeneration of impaired tissue are critical for improved diabetic foot ulcer (DFU) healing. To fulfil this aim, collagen/GAG (Col/GAG) scaffolds activated by MMP-9-targeting siRNA (siMMP-9) were developed in this study. The siMMP-9 complexes were successfully formed by mixing the RALA cell penetrating peptide with siMMP-9. The complexes formulated at N:P ratios of 6 to 15 had a diameter around 100 nm and a positive zeta potential about 40 mV, making them ideal for cellular uptake. In 2 dimensional (2D) culture of human fibroblasts, the cellular uptake of the complexes surpassed 60% and corresponded to a 60% reduction in MMP-9 gene expression in low glucose culture. In high glucose culture, which induces over-expression of MMP-9 and therefore serves as an in vitro model mimicking conditions in DFU, the MMP-9 gene could be downregulated by around 90%. In the 3D culture of fibroblasts, the siMMP-9 activated Col/GAG scaffolds displayed excellent cytocompatibility and ~60% and 40% MMP-9 gene downregulation in low and high glucose culture, respectively. When the siMMP-9 complexes were applied to THP-1 macrophages, the primary cell type producing MMP-9 in DFU, MMP-9 gene expression was significantly reduced by 70% and 50% for M0 and M1 subsets, in 2D culture. In the scaffolds, the MMP-9 gene and protein level of M1 macrophages decreased by around 50% and 30% respectively. Taken together, this study demonstrates that the RALA-siMMP-9 activated Col/GAG scaffolds possess high potential as a promising regenerative platform for improved DFU healing.


Subject(s)
Diabetes Mellitus , Diabetic Foot , Collagen , Diabetic Foot/therapy , Humans , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , RNA, Small Interfering , Wound Healing , ral GTP-Binding Proteins
10.
Sci Rep ; 10(1): 6679, 2020 04 21.
Article in English | MEDLINE | ID: mdl-32317647

ABSTRACT

Substrate topographic patterning is a powerful tool that can be used to manipulate cell shape and orientation. To gain a better understanding of the relationship between surface topography and keratocyte behavior, surface patterns consisting of linear aligned or orthogonally aligned microchannels were used. Photolithography and polymer molding techniques were used to fabricate micropatterns on the surface of polydimethylsiloxane (PDMS). Cells on linear aligned substrates were elongated and aligned in the channel direction, while cells on orthogonal substrates had a more spread morphology. Both linear and orthogonal topographies induced chromatin condensation and resulted in higher expressions of keratocyte specific genes and sulfated glycosaminoglycans (sGAG), compared with non-patterned substrates. However, despite differences in cell morphology and focal adhesions, many genes associated with a native keratocyte phenotype, such as keratocan and ALDH3A1, remain unchanged on the different patterned substrates. This information could be used to optimize substrates for keratocyte culture and to develop scaffolds for corneal regeneration.


Subject(s)
Corneal Keratocytes/cytology , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Size/drug effects , Cells, Cultured , Chromatin/metabolism , Corneal Keratocytes/drug effects , Corneal Keratocytes/metabolism , Cytoskeleton/drug effects , Cytoskeleton/metabolism , Dimethylpolysiloxanes/pharmacology , Extracellular Matrix/drug effects , Extracellular Matrix/metabolism , Focal Adhesions/drug effects , Focal Adhesions/metabolism , Gene Expression Regulation/drug effects , Glycosaminoglycans/metabolism , Humans , Phenotype , Pseudopodia/drug effects , Pseudopodia/metabolism , Pseudopodia/ultrastructure
11.
Colloids Surf B Biointerfaces ; 190: 110971, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32197207

ABSTRACT

Optimal functionality of native corneal stroma depends on a well-ordered arrangement of extracellular matrix (ECM). To develop an in vitro corneal model, replication of the corneal in vivo microenvironment is needed. In this study, the impact of topographic cues on keratocyte phenotype is reported. Photolithography and polymer moulding were used to fabricate microgrooves on polydimethylsiloxane (PDMS) 2-2.5 µm deep and 5 µm, 10 µm, or 20 µm in width. Microgrooves constrained the cells body, compressed nuclei and led to cytoskeletal reorganization. It also influenced the concentration of actin filaments, condensation of chromatin and cell proliferation. Cells became more spread and actin filament concentration decreased as the microgroove width increased. Relationships were also demonstrated between microgroove width and cellular processes such as adhesion, migration and gene expression. Immunocytochemistry and gene expression (RT-PCR) analysis showed that microgroove width upregulated keratocyte specific genes. A microgroove with 5 µm width led to a pronounced alignment of cells along the edges of the microchannels and better supported cell polarization and migration compared with other microgroove widths or planar substrates. These findings provide important fundamental knowledge that could serve as a basis for better-controlled tissue growth and cell-engineering applications for corneal stroma regeneration through topographical patterns.


Subject(s)
Corneal Stroma/drug effects , Dimethylpolysiloxanes/pharmacology , Pseudopodia/drug effects , Stromal Cells/drug effects , Actins/drug effects , Actins/metabolism , Cell Adhesion/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Corneal Stroma/metabolism , Humans , Particle Size , Photochemical Processes , Pseudopodia/metabolism , Stromal Cells/metabolism , Surface Properties
12.
Acta Biomater ; 107: 78-90, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32145393

ABSTRACT

The incorporation of the RGD peptide (arginine-glycine-aspartate) into biomaterials has been proposed to promote cell adhesion to the matrix, which can influence and control cell behaviour and function. While many studies have utilised RGD modified biomaterials for cell delivery, few have examined its effect under the condition of reduced oxygen and nutrients, as found at ischaemic injury sites. Here, we systematically examine the effect of RGD on hMSCs in hyaluronic acid (HA) hydrogel under standard and ischaemic culture conditions, to elucidate under what conditions RGD has beneficial effects over unmodified HA and its effectiveness in improving cell viability. Results demonstrate that under standard culture conditions, RGD significantly increased hMSC spreading and the release of vascular endothelial factor-1 (VEGF) and monocyte chemoattractant factor-1 (MCP-1), compared to unmodified HA hydrogel. As adhesion is known to influence cell survival, we hypothesised that cells in RGD hydrogels would exhibit increased cell viability under ischaemic culture conditions. However, results demonstrate that cell viability and protein release was comparable in both RGD modified and unmodified HA hydrogels. Confocal imaging revealed cellular morphology indicative of weak cell adhesion. Subsequent investigations found that RGD was could exert positive effects on encapsulated cells under ischaemic conditions but only if hMSCs were pre-cultured under standard conditions to allow strong adhesion to RGD before exposure. Together, these results provide novel insight into the value of RGD introduction and suggest that the adhesion of hMSCs to RGD prior to delivery could improve survival and function at ischaemic injury sites. STATEMENT OF SIGNIFICANCE: The development of a biomaterial scaffold capable of maintaining cell viability while promoting cell function is a major research goal in the field of cardiac tissue engineering. This study confirms the suitability of a modified HA hydrogel whereby stem cells in the modified hydrogel showed significantly greater cell spreading and protein secretion compared to cells in the unmodified HA hydrogel. A pre-culture period allowing strong adhesion of the cells to the modified hydrogel was shown to improve cell survival under conditions that mimic the myocardium post-MI. This finding may have a significant impact on the use and timelines of modifications to improve stem cell survival in harsh environments like the injured heart.


Subject(s)
Cell Hypoxia/physiology , Hyaluronic Acid/chemistry , Hydrogels/chemistry , Mesenchymal Stem Cells/physiology , Oligopeptides/chemistry , Tissue Scaffolds/chemistry , Cell Adhesion/drug effects , Cell Culture Techniques , Cell Survival/drug effects , Humans , Mesenchymal Stem Cells/cytology , Tissue Engineering/methods
13.
Cancers (Basel) ; 11(12)2019 Dec 12.
Article in English | MEDLINE | ID: mdl-31842413

ABSTRACT

Glioblastoma (GBM) is the most common primary brain tumor with no available cure. As previously described, seliciclib, a first-generation cyclin-dependent kinase (CDK) inhibitor, down-regulates the anti-apoptotic protein, Mcl-1, in GBM, thereby sensitizing GBM cells to the apoptosis-inducing effects of the death receptor ligand, tumor necrosis factor-related apoptosis-inducing ligand (TRAIL). Here, we have assessed the efficacy of seliciclib when delivered in combination with the antibody against human death receptor 5, drozitumab, in clinically relevant patient-derived xenograft (PDX) models of GBM. A reduction in viability and significant levels of apoptosis were observed in vitro in human GBM neurospheres following treatment with seliciclib plus drozitumab. While the co-treatment strategy induced a similar effect in PDX models, the dosing regimen required to observe seliciclib-targeted responses in the brain, resulted in lethal toxicity in 45% of animals. Additional studies showed that the second-generation CDK inhibitor, CYC065, with improved potency in comparison to seliciclib, induced a significant decrease in the size of human GBM neurospheres in vitro and was well tolerated in vivo, upon administration at clinically relevant doses. This study highlights the continued need for robust pre-clinical assessment of promising treatment approaches using clinically relevant models.

14.
J Cell Biochem ; 120(5): 7412-7427, 2019 May.
Article in English | MEDLINE | ID: mdl-30426531

ABSTRACT

Cripto-1 has been implicated in a number of human cancers. Although there is high potential for a role of Cripto-1 in glioblastoma multiforme (GBM) pathogenesis and progression, few studies have tried to define its role in GBM. These studies were limited in that Cripto-1 expression was not studied in detail in relation to markers of cancer initiation and progression. Therefore, these correlative studies allowed limited interpretation of Criptos-1's effect on the various aspects of GBM development using the U87 GBM cell line. In this study, we sought to delineate the role of Cripto-1 in facilitating pathogenesis, stemness, proliferation, invasion, migration and angiogenesis in GBM. Our findings show that upon overexpressing Cripto-1 in U87 GBM cells, the stemness markers Nanog, Oct4, Sox2, and CD44 increased expression. Similarly, an increase in Ki67 was observed demonstrating Cripto-1's potential to induce cellular proliferation. Likewise, we report a novel finding that increased expression of the markers of migration and invasion, Vimentin and Twist, correlated with upregulation of Cripto-1. Moreover, Cripto-1 exposure led to VEGFR-2 overexpression along with higher tube formation under conditions promoting endothelial growth. Taken together our results support a role for Cripto-1 in the initiation, development, progression, and maintenance of GBM pathogenesis. The data presented here are also consistent with a role for Cripto-1 in the re-growth and invasive growth in GBM. This highlights its potential use as a predictive and diagnostic marker in GBM as well as a therapeutic target.

15.
Front Neurosci ; 13: 1404, 2019.
Article in English | MEDLINE | ID: mdl-32009885

ABSTRACT

Repetitive or prolonged seizures (status epilepticus) can damage neurons within the hippocampus, trigger gliosis, and generate an enduring state of hyperexcitability. Recent studies have suggested that microvesicles including exosomes are released from brain cells following stimulation and tissue injury, conveying contents between cells including microRNAs (miRNAs). Here, we characterized the effects of experimental status epilepticus on the expression of exosome biosynthesis components and analyzed miRNA content in exosome-enriched fractions. Status epilepticus induced by unilateral intra-amygdala kainic acid in mice resulted in acute subfield-specific, bi-directional changes in hippocampal transcripts associated with exosome biosynthesis including up-regulation of endosomal sorting complexes required for transport (ESCRT)-dependent and -independent pathways. Increased expression of exosome components including Alix were detectable in samples obtained 2 weeks after status epilepticus and changes occurred in both the ipsilateral and contralateral hippocampus. RNA sequencing of exosome-enriched fractions prepared using two different techniques detected a rich diversity of conserved miRNAs and showed that status epilepticus selectively alters miRNA contents. We also characterized editing sites of the exosome-enriched miRNAs and found six exosome-enriched miRNAs that were adenosine-to-inosine (ADAR) edited with the majority of the editing events predicted to occur within miRNA seed regions. However, the prevalence of these editing events was not altered by status epilepticus. These studies demonstrate that status epilepticus alters the exosome pathway and its miRNA content, but not editing patterns. Further functional studies will be needed to determine if these changes have pathophysiological significance for epileptogenesis.

16.
J Biomater Appl ; 33(5): 681-692, 2018 11.
Article in English | MEDLINE | ID: mdl-30354912

ABSTRACT

Injectable hydrogels that aim to mechanically stabilise the weakened left ventricle wall to restore cardiac function or to deliver stem cells in cardiac regenerative therapy have shown promising data. However, the clinical translation of hydrogel-based therapies has been limited due to difficulties injecting them through catheters. We have engineered a novel catheter, Advanced Materials Catheter (AMCath), that overcomes translational hurdles associated with delivering fast-gelling covalently cross-linked hyaluronic acid hydrogels to the myocardium. We developed an experimental technique to measure the force required to inject such hydrogels and determined the mechanical/viscoelastic properties of the resulting hydrogels. The preliminary in vivo feasibility of delivering fast-gelling hydrogels through AMCath was demonstrated by accessing the porcine left ventricle and showing that the hydrogel was retained in the myocardium post-injection (three 200 µL injections delivered, 192, 204 and 183 µL measured). However, the mechanical properties of the hydrogels were reduced by passage through AMCath (≤20.62% reduction). We have also shown AMCath can be used to deliver cardiopoietic adipose-derived stem cell-loaded hydrogels without compromising the viability (80% viability) of the cells in vitro. Therefore, we show that hydrogel/catheter compatibility issues can be overcome as we have demonstrated the minimally invasive delivery of a fast-gelling covalently cross-linked hydrogel to the beating myocardium.


Subject(s)
Biocompatible Materials/administration & dosage , Cardiac Catheters , Drug Delivery Systems/instrumentation , Hyaluronic Acid/administration & dosage , Hydrogels/administration & dosage , Animals , Cell Line , Cells, Immobilized/cytology , Cells, Immobilized/transplantation , Cross-Linking Reagents/administration & dosage , Equipment Design , Humans , Injections , Myocardial Infarction/therapy , Stem Cell Transplantation , Stem Cells/cytology , Swine
17.
Exp Neurol ; 295: 36-45, 2017 09.
Article in English | MEDLINE | ID: mdl-28511841

ABSTRACT

The two neuronal populations in the cortex, pyramidal neurons and interneurons, can be separated based on neurotransmitter identity, however, within this segregation a large degree of diversity exists. Investigations into the molecular diversity of neurons are impeded by the inability to isolate cell populations born at different times for gene expression analysis. Developing interneurons may be distinguished by the expression of Glutamic Acid Decarboxylase-67 (GAD67). Neuronal birthdating using nucleoside analogs is an effective means of identifying coetaneous interneurons. Using these two features, neurotransmitter identity and birthdating, we have developed a method to isolate migrating interneurons using fluorescent-activated cell sorting (FACS) for RNA extraction and gene expression analysis. We utilized 5-ethynyl-2'-deoxyuridine (EdU) to birthdate interneuron cohorts and the GAD67 knock-in GFP transgenic mice to identify interneurons. In combination, we achieved simultaneous detection of GFP and EdU signals during FACS sorting of coetaneous interneurons with minimum loss of RNA integrity. RNA quality was deemed to be satisfactory by quantitative polymerase chain reaction (qPCR) for the interneuron-specific transcript Gad67.


Subject(s)
Cell Separation/methods , Cerebral Cortex/cytology , Gene Expression , Genetic Techniques , Interneurons , Animals , Cell Membrane Permeability , Flow Cytometry/methods , Gene Expression Regulation, Developmental , Glutamate Decarboxylase/genetics , Green Fluorescent Proteins , Humans , Mice , Mice, Transgenic , Pyramidal Cells , RNA/biosynthesis , RNA/genetics
18.
Molecules ; 16(9): 7980-93, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21921870

ABSTRACT

Replicating cells undergo DNA synthesis in the highly regulated, S-phase of the cell cycle. Analogues of the pyrimidine deoxynucleoside thymidine may be inserted into replicating DNA, effectively tagging dividing cells allowing their characterisation. Tritiated thymidine, targeted using autoradiography was technically demanding and superseded by 5-bromo-2-deoxyuridine (BrdU) and related halogenated analogues, detected using antibodies. Their detection required the denaturation of DNA, often constraining the outcome of investigations. Despite these limitations BrdU alone has been used to target newly synthesised DNA in over 20,000 reviewed biomedical studies. A recent breakthrough in "tagging DNA synthesis" is the thymidine analogue 5-ethynyl-2'-deoxyuridine (EdU). The alkyne group in EdU is readily detected using a fluorescent azide probe and copper catalysis using 'Huisgen's reaction' (1,3-dipolar cycloaddition or 'click chemistry'). This rapid, two-step biolabelling approach allows the tagging and imaging of DNA within cells whilst preserving the structural and molecular integrity of the cells. The bio-orthogonal detection of EdU allows its application in more experimental assays than previously possible with other "unnatural bases". These include physiological, anatomical and molecular biological experimentation in multiple fields including, stem cell research, cancer biology, and parasitology. The full potential of EdU and related molecules in biomedical research remains to be explored.


Subject(s)
DNA/biosynthesis , Fluorescent Dyes/chemistry , Thymidine/analogs & derivatives , Thymidine/chemistry , Animals , Bromodeoxyuridine/chemistry , Cell Proliferation , Cells, Cultured , Click Chemistry , DNA/chemistry , Deoxyuridine/analogs & derivatives , Deoxyuridine/chemistry , Humans , Staining and Labeling , Stem Cell Niche
SELECTION OF CITATIONS
SEARCH DETAIL
...