Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Infect Immun ; 91(10): e0026823, 2023 10 17.
Article in English | MEDLINE | ID: mdl-37754682

ABSTRACT

In this study, we investigated how different categories of prenatal malaria exposure (PME) influence levels of maternal antibodies in cord blood samples and the subsequent risk of malaria in early childhood in a birth cohort study (N = 661) nested within the COSMIC clinical trial (NCT01941264) in Burkina Faso. Plasmodium falciparum infections during pregnancy and infants' clinical malaria episodes detected during the first year of life were recorded. The levels of maternal IgG and IgG1-4 to 15 P. falciparum antigens were measured in cord blood by quantitative suspension array technology. Results showed a significant variation in the magnitude of maternal antibody levels in cord blood, depending on the PME category, with past placental malaria (PM) more frequently associated with significant increases of IgG and/or subclass levels across three groups of antigens defined as pre-erythrocytic, erythrocytic, and markers of PM, as compared to those from the cord of non-exposed control infants. High levels of antibodies to certain erythrocytic antigens (i.e., IgG to EBA140 and EBA175, IgG1 to EBA175 and MSP142, and IgG3 to EBA140 and MSP5) were independent predictors of protection from clinical malaria during the first year of life. By contrast, high levels of IgG, IgG1, and IgG2 to the VAR2CSA DBL1-2 and IgG4 to DBL3-4 were significantly associated with an increased risk of clinical malaria. These findings indicate that PME categories have different effects on the levels of maternal-derived antibodies to malaria antigens in children at birth, and this might drive heterogeneity to clinical malaria susceptibility in early childhood.


Subject(s)
Malaria, Falciparum , Malaria , Child , Infant , Infant, Newborn , Humans , Child, Preschool , Female , Pregnancy , Plasmodium falciparum , Cohort Studies , Burkina Faso/epidemiology , Maternal Exposure , Placenta , Antibodies, Protozoan , Malaria/epidemiology , Immunoglobulin G , Antigens, Protozoan
3.
PLoS Negl Trop Dis ; 16(6): e0010138, 2022 06.
Article in English | MEDLINE | ID: mdl-35727821

ABSTRACT

BACKGROUND: Soil-transmitted helminths (STH), Schistosoma spp. and Plasmodium falciparum are parasites of major public health importance and co-endemic in many sub-Saharan African countries. Management of these infections requires detection and treatment of infected people and evaluation of large-scale measures implemented. Diagnostic tools are available but their low sensitivity, especially for low intensity helminth infections, leaves room for improvement. Antibody serology could be a useful approach thanks to its potential to detect both current infection and past exposure. METHODOLOGY: We evaluated total IgE responses and specific-IgG levels to 9 antigens from STH, 2 from Schistosoma spp., and 16 from P. falciparum, as potential markers of current infection in a population of children and adults from Southern Mozambique (N = 715). Antibody responses were measured by quantitative suspension array Luminex technology and their performance was evaluated by ROC curve analysis using microscopic and molecular detection of infections as reference. PRINCIPAL FINDINGS: IgG against the combination of EXP1, AMA1 and MSP2 (P. falciparum) in children and NIE (Strongyloides stercoralis) in adults and children had the highest accuracies (AUC = 0.942 and AUC = 0.872, respectively) as markers of current infection. IgG against the combination of MEA and Sm25 (Schistosoma spp.) were also reliable markers of current infection (AUC = 0.779). In addition, IgG seropositivity against 20 out of the 27 antigens in the panel differentiated the seropositive endemic population from the non-endemic population, suggesting a possible role as markers of exposure although sensitivity could not be assessed. CONCLUSIONS: We provided evidence for the utility of antibody serology to detect current infection with parasites causing tropical diseases in endemic populations. In addition, most of the markers have potential good specificity as markers of exposure. We also showed the feasibility of measuring antibody serology with a platform that allows the integration of control and elimination programs for different pathogens.


Subject(s)
Helminths , Malaria, Falciparum , Adult , Animals , Child , Humans , Immunoglobulin G , Malaria, Falciparum/diagnosis , Malaria, Falciparum/epidemiology , Mozambique/epidemiology , Plasmodium falciparum , Schistosoma
4.
Microbiol Spectr ; 9(3): e0110921, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34878303

ABSTRACT

Coinfection with Plasmodium falciparum and helminths may impact the immune response to these parasites because they induce different immune profiles. We studied the effects of coinfections on the antibody profile in a cohort of 715 Mozambican children and adults using the Luminex technology with a panel of 16 antigens from P. falciparum and 11 antigens from helminths (Ascaris lumbricoides, hookworm, Trichuris trichiura, Strongyloides stercoralis, and Schistosoma spp.) and measured antigen-specific IgG and total IgE responses. We compared the antibody profile between groups defined by P. falciparum and helminth previous exposure (based on serology) and/or current infection (determined by microscopy and/or qPCR). In multivariable regression models adjusted by demographic, socioeconomic, water, and sanitation variables, individuals exposed/infected with P. falciparum and helminths had significantly higher total IgE and antigen-specific IgG levels, magnitude (sum of all levels) and breadth of response to both types of parasites compared to individuals exposed/infected with only one type of parasite (P ≤ 0.05). There was a positive association between exposure/infection with P. falciparum and exposure/infection with helminths or the number of helminth species, and vice versa (P ≤ 0.001). In addition, children coexposed/coinfected tended (P = 0.062) to have higher P. falciparum parasitemia than those single exposed/infected. Our results suggest that an increase in the antibody responses in coexposed/coinfected individuals may reflect higher exposure and be due to a more permissive immune environment to infection in the host. IMPORTANCE Coinfection with Plasmodium falciparum and helminths may impact the immune response to these parasites because they induce different immune profiles. We compared the antibody profile between groups of Mozambican individuals defined by P. falciparum and helminth previous exposure and/or current infection. Our results show a significant increase in antibody responses in individuals coexposed/coinfected with P. falciparum and helminths in comparison with individuals exposed/infected with only one of these parasites, and suggest that this increase is due to a more permissive immune environment to infection in the host. Importantly, this study takes previous exposure into account, which is particularly relevant in endemic areas where continuous infections imprint and shape the immune system. Deciphering the implications of coinfections deserves attention because accounting for the real interactions that occur in nature could improve the design of integrated disease control strategies.


Subject(s)
Antibodies, Helminth/blood , Antibodies, Protozoan/blood , Coinfection/immunology , Helminths/immunology , Plasmodium falciparum/immunology , Adolescent , Adult , Animals , Antibodies, Helminth/immunology , Antibodies, Protozoan/immunology , Antigens, Helminth/immunology , Antigens, Protozoan/immunology , Child , Child, Preschool , Female , Helminthiasis/immunology , Helminthiasis/pathology , Humans , Immunoglobulin E/blood , Immunoglobulin E/immunology , Immunoglobulin G/blood , Immunoglobulin G/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/pathology , Male , Mozambique , Parasite Load , Soil/parasitology , Young Adult
5.
J Infect ; 82(4): 45-57, 2021 04.
Article in English | MEDLINE | ID: mdl-33636218

ABSTRACT

OBJECTIVES: Maternal Plasmodium falciparum-specific antibodies may contribute to protect infants against severe malaria. Our main objective was to evaluate the impact of maternal HIV infection and placental malaria on the cord blood levels and efficiency of placental transfer of IgG and IgG subclasses. METHODS: In a cohort of 341 delivering HIV-negative and HIV-positive mothers from southern Mozambique, we measured total IgG and IgG subclasses in maternal and cord blood pairs by quantitative suspension array technology against eight P. falciparum antigens: Duffy-binding like domains 3-4 of VAR2CSA from the erythrocyte membrane protein 1, erythrocyte-binding antigen 140, exported protein 1 (EXP1), merozoite surface proteins 1, 2 and 5, and reticulocyte-binding-homologue-4.2 (Rh4.2). We performed univariable and multivariable regression models to assess the association of maternal HIV infection, placental malaria, maternal variables and pregnancy outcomes on cord antibody levels and antibody transplacental transfer. RESULTS: Maternal antibody levels were the main determinants of cord antibody levels. HIV infection and placental malaria reduced the transfer and cord levels of IgG and IgG1, and this was antigen-dependent. Low birth weight was associated with an increase of IgG2 in cord against EXP1 and Rh4.2. CONCLUSIONS: We found lower maternally transferred antibodies in HIV-exposed infants and those born from mothers with placental malaria, which may underlie increased susceptibility to malaria in these children.


Subject(s)
Antimalarials , HIV Infections , Malaria, Falciparum , Malaria , Antibodies, Protozoan , Child , Female , Humans , Infant , Malaria, Falciparum/epidemiology , Plasmodium falciparum , Pregnancy
6.
Vaccine ; 39(4): 687-698, 2021 01 22.
Article in English | MEDLINE | ID: mdl-33358704

ABSTRACT

BACKGROUND: The evaluation of immune responses to RTS,S/AS01 has traditionally focused on immunoglobulin (Ig) G antibodies that are only moderately associated with protection. The role of other antibody isotypes that could also contribute to vaccine efficacy remains unclear. Here we investigated whether RTS,S/AS01E elicits antigen-specific serum IgA antibodies to the vaccine and other malaria antigens, and we explored their association with protection. METHODS: Ninety-five children (age 5-17 months old at first vaccination) from the RTS,S/AS01E phase 3 clinical trial who received 3 doses of RTS,S/AS01E or a comparator vaccine were selected for IgA quantification 1 month post primary immunization. Two sites with different malaria transmission intensities (MTI) and clinical malaria cases and controls, were included. Measurements of IgA against different constructs of the circumsporozoite protein (CSP) vaccine antigen and 16 vaccine-unrelated Plasmodium falciparum antigens were performed using a quantitative suspension array assay. RESULTS: RTS,S vaccination induced a 1.2 to 2-fold increase in levels of serum/plasma IgA antibodies to all CSP constructs, which was not observed upon immunization with a comparator vaccine. The IgA response against 13 out of 16 vaccine-unrelated P. falciparum antigens also increased after vaccination, and levels were higher in recipients of RTS,S than in comparators. IgA levels to malaria antigens before vaccination were more elevated in the high MTI than the low MTI site. No statistically significant association of IgA with protection was found in exploratory analyses. CONCLUSIONS: RTS,S/AS01E induces IgA responses in peripheral blood against CSP vaccine antigens and other P. falciparum vaccine-unrelated antigens, similar to what we previously showed for IgG responses. Collectively, data warrant further investigation of the potential contribution of vaccine-induced IgA responses to efficacy and any possible interplay, either synergistic or antagonistic, with protective IgG, as identifying mediators of protection by RTS,S/AS01E immunization is necessary for the design of improved second-generation vaccines. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov: NCT008666191.


Subject(s)
Malaria Vaccines , Malaria, Falciparum , Malaria , Adolescent , Antibodies, Protozoan , Antigens, Protozoan , Child , Child, Preschool , Humans , Immunoglobulin A , Infant , Malaria/prevention & control , Malaria, Falciparum/prevention & control , Plasmodium falciparum , Protozoan Proteins
8.
NPJ Vaccines ; 5: 46, 2020.
Article in English | MEDLINE | ID: mdl-32550014

ABSTRACT

The RTS,S/AS01E vaccine has shown consistent but partial vaccine efficacy in a pediatric phase 3 clinical trial using a 3-dose immunization schedule. A fourth-dose 18 months after the primary vaccination was shown to restore the waning efficacy. However, only total IgG against the immunodominant malaria vaccine epitope has been analyzed following the booster. To better characterize the magnitude, nature, and longevity of the immune response to the booster, we measured levels of total IgM, IgG, and IgG1-4 subclasses against three constructs of the circumsporozoite protein (CSP) and the hepatitis B surface antigen (HBsAg, also present in RTS,S) by quantitative suspension array technology in 50 subjects in the phase 3 trial in Manhiça, Mozambique. To explore the impact of vaccination on naturally acquired immune responses, we measured antibodies to P. falciparum antigens not included in RTS,S. We found increased IgG, IgG1, IgG3 and IgG4, but not IgG2 nor IgM, levels against vaccine antigens 1 month after the fourth dose. Overall, antibody responses to the booster dose were lower than the initial peak response to primary immunization and children had higher IgG and IgG1 levels than infants. Higher anti-Rh5 IgG and IgG1-4 levels were detected after the booster dose, suggesting that RTS,S partial protection could increase some blood stage antibody responses. Our work shows that the response to the RTS,S/AS01E booster dose is different from the primary vaccine immune response and highlights the dynamic changes in subclass antibody patterns upon the vaccine booster and with acquisition of adaptive immunity to malaria.

9.
IEEE Access ; 8: 109719-109731, 2020.
Article in English | MEDLINE | ID: mdl-34192104

ABSTRACT

We show that precise knowledge of epidemic transmission parameters is not required to build an informative model of the spread of disease. We propose a detailed model of the topology of the contact network under various external control regimes and demonstrate that this is sufficient to capture the salient dynamical characteristics and to inform decisions. Contact between individuals in the community is characterised by a contact graph, the structure of that contact graph is selected to mimic community control measures. Our model of city-level transmission of an infectious agent (SEIR model) characterises spread via a (a) scale-free contact network (no control); (b) a random graph (elimination of mass gatherings); and (c) small world lattice (partial to full lockdown-"social" distancing). This model exhibits good qualitative agreement between simulation and data from the 2020 pandemic spread of a novel coronavirus. Estimates of the relevant rate parameters of the SEIR model are obtained and we demonstrate the robustness of our model predictions under uncertainty of those estimates. The social context and utility of this work is identified, contributing to a highly effective pandemic response in Western Australia.

10.
Nucleic Acids Res ; 48(D1): D1006-D1021, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31691834

ABSTRACT

The IUPHAR/BPS Guide to PHARMACOLOGY (www.guidetopharmacology.org) is an open-access, expert-curated database of molecular interactions between ligands and their targets. We describe significant updates made over the seven releases during the last two years. The database is notably enhanced through the continued linking of relevant pharmacology with key immunological data types as part of the IUPHAR Guide to IMMUNOPHARMACOLOGY (www.guidetoimmunopharmacology.org) and by a major new extension, the IUPHAR/MMV Guide to Malaria PHARMACOLOGY (www.guidetomalariapharmacology.org). The latter has been constructed in partnership with the Medicines for Malaria Venture, an organization dedicated to identifying, developing and delivering new antimalarial therapies that are both effective and affordable. This is in response to the global challenge of over 200 million cases of malaria and 400 000 deaths worldwide, with the majority in the WHO Africa Region. It provides new pharmacological content, including molecular targets in the malaria parasite, interaction data for ligands with antimalarial activity, and establishes curation of data from screening assays, used routinely in antimalarial drug discovery, against the whole organism. A dedicated portal has been developed to provide quick and focused access to these new data.


Subject(s)
Antimalarials/pharmacology , Databases, Factual , Databases, Pharmaceutical , Drug Discovery/methods , Pharmacology , Antimalarials/therapeutic use , Humans , Ligands , Malaria/drug therapy , Malaria/parasitology , Molecular Targeted Therapy , Plasmodium/drug effects , Software , User-Computer Interface , Web Browser
11.
BMC Med ; 17(1): 157, 2019 08 14.
Article in English | MEDLINE | ID: mdl-31409398

ABSTRACT

BACKGROUND: Vaccination and naturally acquired immunity against microbial pathogens may have complex interactions that influence disease outcomes. To date, only vaccine-specific immune responses have routinely been investigated in malaria vaccine trials conducted in endemic areas. We hypothesized that RTS,S/A01E immunization affects acquisition of antibodies to Plasmodium falciparum antigens not included in the vaccine and that such responses have an impact on overall malaria protective immunity. METHODS: We evaluated IgM and IgG responses to 38 P. falciparum proteins putatively involved in naturally acquired immunity to malaria in 195 young children participating in a case-control study nested within the African phase 3 clinical trial of RTS,S/AS01E (MAL055 NCT00866619) in two sites of different transmission intensity (Kintampo high and Manhiça moderate/low). We measured antibody levels by quantitative suspension array technology and applied regression models, multimarker analysis, and machine learning techniques to analyze factors affecting their levels and correlates of protection. RESULTS: RTS,S/AS01E immunization decreased antibody responses to parasite antigens considered as markers of exposure (MSP142, AMA1) and levels correlated with risk of clinical malaria over 1-year follow-up. In addition, we show for the first time that RTS,S vaccination increased IgG levels to a specific group of pre-erythrocytic and blood-stage antigens (MSP5, MSP1 block 2, RH4.2, EBA140, and SSP2/TRAP) which levels correlated with protection against clinical malaria (odds ratio [95% confidence interval] 0.53 [0.3-0.93], p = 0.03, for MSP1; 0.52 [0.26-0.98], p = 0.05, for SSP2) in multivariable logistic regression analyses. CONCLUSIONS: Increased antibody responses to specific P. falciparum antigens in subjects immunized with this partially efficacious vaccine upon natural infection may contribute to overall protective immunity against malaria. Inclusion of such antigens in multivalent constructs could result in more efficacious second-generation multistage vaccines.


Subject(s)
Antibodies, Protozoan/immunology , Malaria Vaccines/immunology , Malaria, Falciparum/immunology , Malaria, Falciparum/prevention & control , Antibody Formation , Antigens, Protozoan/immunology , Case-Control Studies , Child , Child, Preschool , Female , Humans , Infant , Male , Plasmodium falciparum/immunology , Vaccination/methods
12.
Front Immunol ; 10: 439, 2019.
Article in English | MEDLINE | ID: mdl-30930896

ABSTRACT

Naturally acquired immunity (NAI) to Plasmodium falciparum malaria is mainly mediated by IgG antibodies but the subclasses, epitope targets and effector functions have not been unequivocally defined. Dissecting the type and specificity of antibody responses mediating NAI is a key step toward developing more effective vaccines to control the disease. We investigated the role of IgG subclasses to malaria antigens in protection against disease and the factors that affect their levels, including vaccination with RTS,S/AS01E. We analyzed plasma and serum samples at baseline and 1 month after primary vaccination with RTS,S or comparator in African children and infants participating in a phase 3 trial in two sites of different malaria transmission intensity: Kintampo in Ghana and Manhiça in Mozambique. We used quantitative suspension array technology (qSAT) to measure IgG1-4 responses to 35 P. falciparum pre-erythrocytic and blood stage antigens. Our results show that the pattern of IgG response is predominantly IgG1 or IgG3, with lower levels of IgG2 and IgG4. Age, site and RTS,S vaccination significantly affected antibody subclass levels to different antigens and susceptibility to clinical malaria. Univariable and multivariable analysis showed associations with protection mainly for cytophilic IgG3 levels to selected antigens, followed by IgG1 levels and, unexpectedly, also with IgG4 levels, mainly to antigens that increased upon RTS,S vaccination such as MSP5 and MSP1 block 2, among others. In contrast, IgG2 was associated with malaria risk. Stratified analysis in RTS,S vaccinees pointed to novel associations of IgG4 responses with immunity mainly involving pre-erythrocytic antigens upon RTS,S vaccination. Multi-marker analysis revealed a significant contribution of IgG3 responses to malaria protection and IgG2 responses to malaria risk. We propose that the pattern of cytophilic and non-cytophilic IgG antibodies is antigen-dependent and more complex than initially thought, and that mechanisms of both types of subclasses could be involved in protection. Our data also suggests that RTS,S efficacy is significantly affected by NAI, and indicates that RTS,S vaccination significantly alters NAI.


Subject(s)
Antigens, Protozoan/immunology , Immunoglobulin G/blood , Malaria Vaccines/administration & dosage , Plasmodium falciparum/immunology , Adaptive Immunity , Female , Humans , Infant , Malaria/blood , Malaria/immunology , Malaria/prevention & control , Male , Vaccination
13.
Malar J ; 17(1): 219, 2018 Jun 01.
Article in English | MEDLINE | ID: mdl-29859096

ABSTRACT

BACKGROUND: The quantitative suspension array technology (qSAT) is a useful platform for malaria immune marker discovery. However, a major challenge for large sero-epidemiological and malaria vaccine studies is the comparability across laboratories, which requires the access to standardized control reagents for assay optimization, to monitor performance and improve reproducibility. Here, the Plasmodium falciparum antibody reactivities of the newly available WHO reference reagent for anti-malaria human plasma (10/198) and of additional customized positive controls were examined with seven in-house qSAT multiplex assays measuring IgG, IgG1-4 subclasses, IgM and IgE against a panel of 40 antigens. The different positive controls were tested at different incubation times and temperatures (4 °C overnight, 37 °C 2 h, room temperature 1 h) to select the optimal conditions. RESULTS: Overall, the WHO reference reagent had low IgG2, IgG4, IgM and IgE, and also low anti-CSP antibody levels, thus this reagent was enriched with plasmas from RTS,S-vaccinated volunteers to be used as standard for CSP-based vaccine studies. For the IgM assay, another customized plasma pool prepared with samples from malaria primo-infected adults with adequate IgM levels proved to be more adequate as a positive control. The range and magnitude of IgG and IgG1-4 responses were highest when the WHO reference reagent was incubated with antigen-coupled beads at 4 °C overnight. IgG levels measured in the negative control did not vary between incubations at 37 °C 2 h and 4 °C overnight, indicating no difference in unspecific binding. CONCLUSIONS: With this study, the immunogenicity profile of the WHO reference reagent, including seven immunoglobulin isotypes and subclasses, and more P. falciparum antigens, also those included in the leading RTS,S malaria vaccine, was better characterized. Overall, incubation of samples at 4 °C overnight rendered the best performance for antibody measurements against the antigens tested. Although the WHO reference reagent performed well to measure IgG to the majority of the common P. falciparum blood stage antigens tested, customized pools may need to be used as positive controls depending on the antigens (e.g. pre-erythrocytic proteins of low natural immunogenicity) and isotypes/subclasses (e.g. IgM) under study.


Subject(s)
Antibodies, Protozoan/analysis , Immunoglobulin Isotypes/analysis , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control , Plasmodium falciparum/immunology , Serologic Tests/methods , Immunoglobulin E/analysis , Immunoglobulin G/analysis , Immunoglobulin M/analysis , Malaria Vaccines/immunology , Seroepidemiologic Studies
14.
BMC Res Notes ; 10(1): 472, 2017 Sep 08.
Article in English | MEDLINE | ID: mdl-28886727

ABSTRACT

BACKGROUND: High parasite-specific antibody levels are generally associated with low susceptibility to Plasmodium falciparum malaria. This has been supported by several studies in which clinical malaria cases of P. falciparum malaria were reported to be associated with low antibody avidities. This study was conducted to evaluate the role of age, malaria transmission intensity and incidence of clinical malaria in the induction of protective humoral immune response against P. falciparum malaria in children living in Burkina Faso. METHODS: We combined levels of IgG and IgG subclasses responses to P. falciparum antigens: Merozoite Surface Protein 3 (MSP3), Merozoite Surface Protein 2a (MSP2a), Merozoite Surface Protein 2b (MSP2b), Glutamate Rich Protein R0 (GLURP R0) and Glutamate Rich Protein R2 (GLURP R2) in plasma samples from 325 children under five (05) years with age, malaria transmission season and malaria incidence. RESULTS: We notice higher prevalence of P. falciparum infection in low transmission season compared to high malaria transmission season. While, parasite density was lower in low transmission than high transmission season. IgG against all antigens investigated increased with age. High levels of IgG and IgG subclasses to all tested antigens except for GLURP R2 were associated with the intensity of malaria transmission. IgG to MSP3, MSP2b, GLURP R2 and GLURP R0 were associated with low incidence of malaria. All IgG subclasses were associated with low incidence of P. falciparum malaria, but these associations were stronger for cytophilic IgGs. CONCLUSIONS: On the basis of the data presented in this study, we conclude that the induction of humoral immune response to tested malaria antigens is related to age, transmission season level and incidence of clinical malaria.


Subject(s)
Antibodies, Protozoan/blood , Antibody Formation/immunology , Antigens, Protozoan/immunology , Malaria, Falciparum/blood , Malaria, Falciparum/epidemiology , Plasmodium falciparum/immunology , Adolescent , Age Factors , Burkina Faso/epidemiology , Child , Child, Preschool , Female , Humans , Incidence , Infant , Male
15.
Malar J ; 15(1): 267, 2016 05 10.
Article in English | MEDLINE | ID: mdl-27165412

ABSTRACT

BACKGROUND: Individuals living in malaria-endemic regions may be exposed to more than one Plasmodium species; there is paucity of data on the distribution of the different species of Plasmodium in affected populations, in part due to the diagnostic method of microscopy, which cannot easily differentiate between the species. Sero-epidemiological data can overcome some of the shortcomings of microscopy. METHODS: The specificity of IgG antibodies to recombinant merozoite surface protein 1 (MSP-119) derived from four human Plasmodium species (Plasmodium falciparum, Plasmodium vivax, Plasmodium malariae, Plasmodium ovale) was investigated using competition enzyme-linked immunosorbent assay. Subsequently, these antigens were used to determine the exposure prevalence to the different Plasmodium species in serum samples of participants. One-hundred individuals, aged five-18 years, from each of the three Plasmodium meso-endemic Zimbabwean villages (Burma Valley, Mutoko, Chiredzi) were recruited in the study. RESULTS: The study demonstrated that the host serum reactivity to MSP-119 antigens was species-specific and that no cross-reactivity occurred. The overall prevalence of antibody response to MSP-119 antigens was 61 % in Burma Valley, 31 % in Mutoko and 32 % in Chiredzi. Single species IgG responses to MSP-119 were most frequent against P. falciparum, followed by P. malariae and P. ovale, with responses to P. vivax being the least prevalent. Interestingly, 78-87 and 50 % of sera with IgG responses to P. malariae and P. ovale MSP-119, respectively, also had IgG specific response for P. falciparum MSP-119 antigens, indicating that exposure to these species is a common occurrence in these populations. Single species IgG responses to the non-falciparum species were at a very low frequency, ranging between 0 and 13 % for P. malariae. CONCLUSIONS: There is evidence of a higher exposure to the non-falciparum parasite species than previously reported in Zimbabwe. The recombinant MSP-119 antigens could be used as additional diagnostic tools in antibody assays for the detection of exposure to the different Plasmodium species. The results also introduce an interesting concept of the co-infection of non-falciparum Plasmodium almost always with P. falciparum, which requires further validation and mechanistic studies.


Subject(s)
Antibodies, Protozoan/blood , Malaria/epidemiology , Malaria/parasitology , Plasmodium/classification , Plasmodium/immunology , Adolescent , Child , Child, Preschool , Cohort Studies , Enzyme-Linked Immunosorbent Assay , Female , Humans , Immunoglobulin G/blood , Male , Merozoite Surface Protein 1/immunology , Seroepidemiologic Studies , Zimbabwe/epidemiology
16.
Malar J ; 15: 123, 2016 Feb 27.
Article in English | MEDLINE | ID: mdl-26921176

ABSTRACT

BACKGROUND: Differences in parasite transmission intensity influence the process of acquisition of host immunity to Plasmodium falciparum malaria and ultimately, the rate of malaria related morbidity and mortality. Potential vaccines being designed to complement current intervention efforts therefore need to be evaluated against different malaria endemicity backgrounds. METHODS: The associations between antibody responses to the chimeric merozoite surface protein 1 block 2 hybrid (MSP1 hybrid), glutamate-rich protein region 2 (GLURP R2) and the peptide AS202.11, and the risk of malaria were assessed in children living in malaria hyperendemic (Burkina Faso, n = 354) and hypo-endemic (Ghana, n = 209) areas. Using the same reagent lots and standardized protocols for both study sites, immunoglobulin (Ig) M, IgG and IgG sub-class levels to each antigen were measured by ELISA in plasma from the children (aged 6-72 months). Associations between antibody levels and risk of malaria were assessed using Cox regression models adjusting for covariates. RESULTS: There was a significant association between GLURP R2 IgG3 and reduced risk of malaria after adjusting age of children in both the Burkinabe (hazard ratio 0.82; 95 % CI 0.74-0.91, p < 0.0001) and the Ghanaian (HR 0.48; 95 % CI 0.25-0.91, p = 0.02) cohorts. MSP1 hybrid IgM was associated (HR 0.85; 95 % CI 0.73-0.98, p = 0.02) with reduced risk of malaria in Burkina Faso cohort while IgG against AS202.11 in the Ghanaian children was associated with increased risk of malaria (HR 1.29; 95 % CI 1.01-1.65, p = 0.04). CONCLUSION: These findings support further development of GLURP R2 and MSP1 block 2 hybrid, perhaps as a fusion vaccine antigen targeting malaria blood stage that can be deployed in areas of varying transmission intensity.


Subject(s)
Antibodies, Protozoan/blood , Malaria, Falciparum/epidemiology , Malaria, Falciparum/immunology , Plasmodium falciparum/immunology , Protozoan Proteins/immunology , Burkina Faso/epidemiology , Child , Child, Preschool , Ghana/epidemiology , Humans , Infant , Merozoite Surface Protein 1/immunology , Peptides/immunology
17.
BMC Vet Res ; 11: 256, 2015 Oct 09.
Article in English | MEDLINE | ID: mdl-26452558

ABSTRACT

BACKGROUND: Infectious Bronchitis is a highly contagious respiratory disease which causes tracheal lesions and also affects the reproductive tract and is responsible for large economic losses to the poultry industry every year. This is due to both mortality (either directly provoked by IBV itself or due to subsequent bacterial infection) and lost egg production. The virus is difficult to control by vaccination, so new methods to curb the impact of the disease need to be sought. Here, we seek to identify genes conferring resistance to this coronavirus, which could help in selective breeding programs to rear chickens which do not succumb to the effects of this disease. METHODS: Whole genome gene expression microarrays were used to analyse the gene expression differences, which occur upon infection of birds with Infectious Bronchitis Virus (IBV). Tracheal tissue was examined from control and infected birds at 2, 3 and 4 days post-infection in birds known to be either susceptible or resistant to the virus. The host innate immune response was evaluated over these 3 days and differences between the susceptible and resistant lines examined. RESULTS: Genes and biological pathways involved in the early host response to IBV infection were determined andgene expression differences between susceptible and resistant birds were identified. Potential candidate genes for resistance to IBV are highlighted. CONCLUSIONS: The early host response to IBV is analysed and potential candidate genes for disease resistance are identified. These putative resistance genes can be used as targets for future genetic and functional studies to prove a causative link with resistance to IBV.


Subject(s)
Chickens , Coronavirus Infections/veterinary , Genetic Predisposition to Disease , Infectious bronchitis virus/immunology , Poultry Diseases/virology , Animals , Chickens/genetics , Coronavirus Infections/immunology , Gene Expression Regulation/immunology , Genome , Immunity, Innate , Poultry Diseases/immunology , Protein Array Analysis/veterinary , Real-Time Polymerase Chain Reaction/veterinary , Viral Load
18.
PLoS Pathog ; 11(7): e1005022, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26134405

ABSTRACT

Rosetting, the adhesion of Plasmodium falciparum-infected erythrocytes to uninfected erythrocytes, involves clonal variants of the parasite protein P. falciparum erythrocyte membrane protein 1 (PfEMP1) and soluble serum factors. While rosetting is a well-known phenotypic marker of parasites associated with severe malaria, the reason for this association remains unclear, as do the molecular details of the interaction between the infected erythrocyte (IE) and the adhering erythrocytes. Here, we identify for the first time a single serum factor, the abundant serum protease inhibitor α2-macroglobulin (α2M), which is both required and sufficient for rosetting mediated by the PfEMP1 protein HB3VAR06 and some other rosette-mediating PfEMP1 proteins. We map the α2M binding site to the C terminal end of HB3VAR06, and demonstrate that α2M can bind at least four HB3VAR06 proteins, plausibly augmenting their combined avidity for host receptors. IgM has previously been identified as a rosette-facilitating soluble factor that acts in a similar way, but it cannot induce rosetting on its own. This is in contrast to α2M and probably due to the more limited cross-linking potential of IgM. Nevertheless, we show that IgM works synergistically with α2M and markedly lowers the concentration of α2M required for rosetting. Finally, HB3VAR06+ IEs share the capacity to bind α2M with subsets of genotypically distinct P. falciparum isolates forming rosettes in vitro and of patient parasite isolates ex vivo. Together, our results are evidence that P. falciparum parasites exploit α2M (and IgM) to expand the repertoire of host receptors available for PfEMP1-mediated IE adhesion, such as the erythrocyte carbohydrate moieties that lead to formation of rosettes. It is likely that this mechanism also affects IE adhesion to receptors on vascular endothelium. The study opens opportunities for broad-ranging immunological interventions targeting the α2M--(and IgM-) binding domains of PfEMP1, which would be independent of the host receptor specificity of clinically important PfEMP1 antigens.


Subject(s)
Erythrocytes/parasitology , Malaria, Falciparum/metabolism , Protozoan Proteins/metabolism , Rosette Formation , alpha-Macroglobulins/metabolism , Animals , Humans , Plasmodium falciparum/metabolism
19.
F1000Res ; 4: 919, 2015.
Article in English | MEDLINE | ID: mdl-28883910

ABSTRACT

Malaria remains a major cause of mortality and morbidity worldwide. Progress has been made in recent years with the development of vaccines that could pave the way towards protection of hundreds of millions of exposed individuals. Here we used a modular repertoire approach to re-analyze a publically available microarray blood transcriptome dataset monitoring the response to malaria vaccination. We report the seminal identification of interferon signatures in the blood of subjects on days 1, 3 and 14 following administration of the third dose of the RTS,S recombinant malaria vaccine. These signatures at day 1 correlate with protection, and at days 3 and 14 to susceptibility to subsequent challenge of study subjects with live parasites. In addition we putatively link the decreased abundance of interferon-inducible transcripts observed at days 3 and 14 post-vaccination with the elicitation of an antigen specific IgE response in a subset of vaccine recipients that failed to be protected by the RTS,S vaccine.

20.
Neuromuscul Disord ; 25(2): 127-36, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25454731

ABSTRACT

Emery-Dreifuss muscular dystrophy (EDMD) is a neuromuscular disease characterized by early contractures, slowly progressive muscular weakness and life-threatening cardiac arrhythmia that can develop into cardiomyopathy. In X-linked EDMD (EDMD1), female carriers are usually unaffected. Here we present a clinical description and in vitro characterization of a mildly affected EDMD1 female carrying the heterozygous EMD mutation c.174_175delTT; p.Y59* that yields loss of protein. Muscle tissue sections and cultured patient myoblasts exhibited a mixed population of emerin-positive and -negative cells; thus uneven X-inactivation was excluded as causative. Patient blood cells were predominantly emerin-positive, but considerable nuclear lobulation was observed in non-granulocyte cells - a novel phenotype in EDMD. Both emerin-positive and emerin-negative myoblasts exhibited spontaneous differentiation in tissue culture, though emerin-negative myoblasts were more proliferative than emerin-positive cells. The preferential proliferation of emerin-negative myoblasts together with the high rate of spontaneous differentiation in both populations suggests that loss of functional satellite cells might be one underlying mechanism for disease pathology. This could also account for the slowly developing muscle phenotype.


Subject(s)
Cell Differentiation/physiology , Cell Proliferation/physiology , Muscular Dystrophy, Emery-Dreifuss/pathology , Myoblasts/pathology , Adolescent , Adult , Age of Onset , Antigens, CD , Autoantigens/metabolism , Cardiomyopathies/etiology , Cell Cycle Proteins/metabolism , Cell Differentiation/genetics , Cell Proliferation/genetics , Cells, Cultured , Child , Family Health , Female , Flow Cytometry , Humans , Ki-67 Antigen/metabolism , Lamin Type A/metabolism , Magnetic Resonance Imaging , Male , Membrane Proteins/genetics , Membrane Proteins/metabolism , Muscular Dystrophy, Emery-Dreifuss/complications , Muscular Dystrophy, Emery-Dreifuss/genetics , Myoblasts/metabolism , Nuclear Proteins/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Transfection , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...