Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 116
Filter
2.
Lancet ; 403(10435): 1443-1444, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38614475
3.
J Affect Disord ; 356: 167-176, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38494137

ABSTRACT

Sex hormones have biological effects on inflammation, and these might contribute to the sex-specific features of depression. C-reactive protein (CRP) is the most widely used inflammatory biomarker and consistent evidence shows a significant proportion (20-30 %) of patients with major depressive disorder (MDD) have CRP levels above 3 mg/L, a threshold indicating at least low-grade inflammation. Here, we investigate the interplay between sex hormones and CRP in the cross-sectional, observational Biomarkers in Depression Study. We measured serum high-sensitivity (hs-)CRP, in 64 healthy controls and 178 MDD patients, subdivided into those with hs-CRP below 3 mg/L (low-CRP; 53 males, 72 females) and with hs-CRP above 3 mg/L (high-CRP; 19 males, 34 females). We also measured interleukin-6, testosterone, 17-ß-estradiol (E2), progesterone, sex-hormone binding globulin (SHBG), follicle-stimulating and luteinising hormones, and calculated testosterone-to-E2 ratio (T/E2), free androgen and estradiol indexes (FAI, FEI), and testosterone secretion index. In males, high-CRP patients had lower testosterone than controls (p = 0.001), and lower testosterone (p = 0.013), T/E2 (p < 0.001), and higher FEI (p = 0.015) than low-CRP patients. In females, high-CRP patients showed lower SHGB levels than controls (p = 0.033) and low-CRP patients (p = 0.034). The differences in testosterone, T/E2 ratio, and FEI levels in males survived the Benjamini-Hochberg FDR correction. In linear regression analyses, testosterone (ß = -1.069 p = 0.033) predicted CRP concentrations (R2 = 0.252 p = 0.002) in male patients, and SHBG predicted CRP levels (ß = -0.628 p = 0.009, R2 = 0.172 p = 0.003) in female patients. These findings may guide future research investigating interactions between gonadal and immune systems in depression, and the potential of hormonal therapies in MDD with inflammation.


Subject(s)
C-Reactive Protein , Depressive Disorder, Major , Estradiol , Inflammation , Interleukin-6 , Progesterone , Sex Hormone-Binding Globulin , Testosterone , Humans , Depressive Disorder, Major/blood , Male , Female , C-Reactive Protein/analysis , Adult , Cross-Sectional Studies , Testosterone/blood , Middle Aged , Inflammation/blood , Sex Hormone-Binding Globulin/analysis , Estradiol/blood , Progesterone/blood , Interleukin-6/blood , Biomarkers/blood , Gonadal Steroid Hormones/blood , Sex Factors , Follicle Stimulating Hormone/blood , Luteinizing Hormone/blood
4.
Brain Behav Immun ; 119: 197-210, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38555987

ABSTRACT

BACKGROUND: Altered neural haemodynamic activity during decision making and learning has been linked to the effects of inflammation on mood and motivated behaviours. So far, it has been reported that blunted mesolimbic dopamine reward signals are associated with inflammation-induced anhedonia and apathy. Nonetheless, it is still unclear whether inflammation impacts neural activity underpinning decision dynamics. The process of decision making involves integration of noisy evidence from the environment until a critical threshold of evidence is reached. There is growing empirical evidence that such process, which is usually referred to as bounded accumulation of decision evidence, is affected in the context of mental illness. METHODS: In a randomised, placebo-controlled, crossover study, 19 healthy male participants were allocated to placebo and typhoid vaccination. Three to four hours post-injection, participants performed a probabilistic reversal-learning task during functional magnetic resonance imaging. To capture the hidden neurocognitive operations underpinning decision-making, we devised a hybrid sequential sampling and reinforcement learning computational model. We conducted whole brain analyses informed by the modelling results to investigate the effects of inflammation on the efficiency of decision dynamics and reward learning. RESULTS: We found that during the decision phase of the task, typhoid vaccination attenuated neural signatures of bounded evidence accumulation in the dorsomedial prefrontal cortex, only for decisions requiring short integration time. Consistent with prior work, we showed that, in the outcome phase, mild acute inflammation blunted the reward prediction error in the bilateral ventral striatum and amygdala. CONCLUSIONS: Our study extends current insights into the effects of inflammation on the neural mechanisms of decision making and shows that exogenous inflammation alters neural activity indexing efficiency of evidence integration, as a function of choice discriminability. Moreover, we replicate previous findings that inflammation blunts striatal reward prediction error signals.


Subject(s)
Cross-Over Studies , Decision Making , Inflammation , Magnetic Resonance Imaging , Reward , Humans , Male , Magnetic Resonance Imaging/methods , Adult , Inflammation/metabolism , Decision Making/physiology , Young Adult , Typhoid-Paratyphoid Vaccines , Prefrontal Cortex/metabolism , Healthy Volunteers , Brain/metabolism
5.
Arthritis Rheumatol ; 76(4): 522-530, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37975154

ABSTRACT

OBJECTIVE: Chronic fatigue is a major clinical unmet need among patients with rheumatoid arthritis (RA). Current therapies are limited to nonpharmacological interventions, such as personalized exercise programs (PEPs) and cognitive-behavioral approaches (CBAs); however, most patients still continue to report severe fatigue. To inform more effective therapies, we conducted a magnetic resonance imaging (MRI) brain study of PEPs and CBAs, nested within a randomized controlled trial (RCT), to identify their neurobiological mechanisms of fatigue reduction in RA. METHODS: A subgroup of patients with RA (n = 90), participating in an RCT of PEPs and CBAs for fatigue, undertook a multimodal MRI brain scan following randomization to either usual care (UC) alone or in addition to PEPs and CBAs and again after the intervention (six months). Brain regional volumetric, functional, and structural connectivity indices were curated and then computed employing a causal analysis framework. The primary outcome was fatigue improvement (Chalder fatigue scale). RESULTS: Several structural and functional connections were identified as mediators of fatigue improvement in both PEPs and CBAs compared to UC. PEPs had a more pronounced effect on functional connectivity than CBAs; however, structural connectivity between the left isthmus cingulate cortex (L-ICC) and left paracentral lobule (L-PCL) was shared, and the size of mediation effect ranked highly for both PEPs and CBAs (ßAverage = -0.46, SD 0.61; ßAverage = -0.32, SD 0.47, respectively). CONCLUSION: The structural connection between the L-ICC and L-PCL appears to be a dominant mechanism for how both PEPs and CBAs reduce fatigue among patients with RA. This supports its potential as a substrate of fatigue neurobiology and a putative candidate for future targeting.


Subject(s)
Arthritis, Rheumatoid , Neurobiology , Humans , Arthritis, Rheumatoid/pathology , Magnetic Resonance Imaging/methods , Brain , Cognition
6.
Article in English | MEDLINE | ID: mdl-38112963

ABSTRACT

The last two decades have seen a flourishing of research into the immunobiology of psychiatric phenotypes, in particular major depressive disorder. Both preclinical and clinical data have highlighted pathways and possible mechanisms that might link changes in immunobiology, most especially inflammation, to clinically relevant behaviour. From a therapeutics perspective, a major impetus has been the action of Biologics, often monoclonal antibodies, that target specific cytokines acting as "molecular scalpels" helping to uncover the actions of those proteins. These interventions have been associated with improvements in mood and related symptoms. There are now enough studies and participants to permit meta-analytic analyses of the actions of these and other anti-inflammatory agents.In this chapter, the focus is on the evidence for the role of inflammation biology in depression and the meta-analytic data from trials. The putative mechanisms that might underpin the antidepressant effect of anti-inflammatory drugs are also explored. Lastly, I describe the more stubborn difficulties around heterogeneity, deep phenotyping and stratification as well as improved animal models and greater understanding of the biology that might be addressed by future studies.

7.
Nat Commun ; 14(1): 8487, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38135686

ABSTRACT

To understand neurological complications of COVID-19 better both acutely and for recovery, we measured markers of brain injury, inflammatory mediators, and autoantibodies in 203 hospitalised participants; 111 with acute sera (1-11 days post-admission) and 92 convalescent sera (56 with COVID-19-associated neurological diagnoses). Here we show that compared to 60 uninfected controls, tTau, GFAP, NfL, and UCH-L1 are increased with COVID-19 infection at acute timepoints and NfL and GFAP are significantly higher in participants with neurological complications. Inflammatory mediators (IL-6, IL-12p40, HGF, M-CSF, CCL2, and IL-1RA) are associated with both altered consciousness and markers of brain injury. Autoantibodies are more common in COVID-19 than controls and some (including against MYL7, UCH-L1, and GRIN3B) are more frequent with altered consciousness. Additionally, convalescent participants with neurological complications show elevated GFAP and NfL, unrelated to attenuated systemic inflammatory mediators and to autoantibody responses. Overall, neurological complications of COVID-19 are associated with evidence of neuroglial injury in both acute and late disease and these correlate with dysregulated innate and adaptive immune responses acutely.


Subject(s)
Brain Injuries , COVID-19 , Humans , Follow-Up Studies , Cytokines , COVID-19/complications , COVID-19 Serotherapy , Autoantibodies , Inflammation Mediators , Biomarkers , Glial Fibrillary Acidic Protein
8.
Psychiatry Res Neuroimaging ; 336: 111728, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37939431

ABSTRACT

Major depressive disorder (MDD) is associated with biased perception of human movement. Gesture is important for communication and in this study we investigated neural correlates of gesture perception in MDD. We hypothesised different neural activity between individuals with MDD and typical individuals when viewing instrumental and expressive gestures that were negatively or positively valenced. Differences were expected in brain areas associated with gesture perception, including superior temporal, frontal, and emotion processing regions. We recruited 12 individuals with MDD and 12 typical controls matched on age, gender, and handedness. They viewed gestures displayed by stick figures while functional magnetic resonance imaging (fMRI) was performed. Results of a random effects three-way mixed ANOVA indicated that individuals with MDD had greater activity in the right claustrum compared to controls, regardless of gesture type or valence. Additionally, we observed main effects of gesture type and valence, regardless of group. Perceiving instrumental compared to expressive gestures was associated with greater activity in the left cuneus and left superior temporal gyrus, while perceiving negative compared to positive gestures was associated with greater activity in the right precuneus and right lingual gyrus. We also observed a two-way interaction between gesture type and valence in various brain regions.


Subject(s)
Depressive Disorder, Major , Humans , Depressive Disorder, Major/diagnostic imaging , Gestures , Depression , Brain Mapping , Magnetic Resonance Imaging/methods , Perception
9.
Nat Rev Rheumatol ; 19(12): 790-804, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37923863

ABSTRACT

Depression is a common and disabling comorbidity in rheumatoid arthritis that not only decreases the likelihood of remission and treatment adherence but also increases the risk of disability and mortality in patients with rheumatoid arthritis. Compelling data that link immune mechanisms to major depressive disorder indicate possible common mechanisms that drive the pathology of the two conditions. Preclinical evidence suggests that pro-inflammatory cytokines, which are prevalent in rheumatoid arthritis, have various effects on monoaminergic neurotransmission, neurotrophic factors and measures of synaptic plasticity. Neuroimaging studies provide insight into the consequences of inflammation on the brain (for example, on neural connectivity), and clinical trial data highlight the beneficial effects of immune modulation on comorbid depression. Major depressive disorder occurs more frequently in patients with rheumatoid arthritis than in the general population, and major depressive disorder also increases the risk of a future diagnosis of rheumatoid arthritis, further highlighting the link between rheumatoid arthritis and major depressive disorder. This Review focuses on interactions between peripheral and central immunobiological mechanisms in the context of both rheumatoid arthritis and major depressive disorder. Understanding these mechanisms will provide a basis for future therapeutic development, not least in depression.


Subject(s)
Arthritis, Rheumatoid , Depressive Disorder, Major , Humans , Depression/etiology , Depression/drug therapy , Depression/epidemiology , Depressive Disorder, Major/complications , Depressive Disorder, Major/epidemiology , Arthritis, Rheumatoid/complications , Arthritis, Rheumatoid/epidemiology , Arthritis, Rheumatoid/drug therapy , Comorbidity , Inflammation
10.
J Cogn Neurosci ; 35(12): 2089-2109, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37788326

ABSTRACT

Motivational (i.e., Pavlovian) values interfere with instrumental responding and can lead to suboptimal decision-making. In humans, task-based neuroimaging studies have only recently started illuminating the functional neuroanatomy of Pavlovian biasing of instrumental control. To provide a mechanistic understanding of the neural dynamics underlying the Pavlovian and instrumental valuation systems, analysis of neuroimaging data has been informed by computational modeling of conditioned behavior. Nonetheless, because of collinearities in Pavlovian and instrumental predictions, previous research failed to tease out hemodynamic activity that is parametrically and dynamically modulated by coexistent Pavlovian and instrumental value expectations. Moreover, neural correlates of Pavlovian to instrumental transfer effects have so far only been identified in extinction (i.e., in the absence of learning). In this study, we devised a modified version of the orthogonalized go/no-go paradigm, which introduced Pavlovian-only catch trials to better disambiguate trial-by-trial Pavlovian and instrumental predictions in both sexes. We found that hemodynamic activity in the ventromedial pFC covaried uniquely with the model-derived Pavlovian value expectations. Notably, modulation of neural activity encoding for instrumental predictions in the supplementary motor cortex was linked to successful action selection in conflict conditions. Furthermore, hemodynamic activity in regions pertaining to the limbic system and medial pFC was correlated with synergistic Pavlovian and instrumental predictions and improved conditioned behavior during congruent trials. Altogether, our results provide new insights into the functional neuroanatomy of decision-making and corroborate the validity of our variant of the orthogonalized go/no-go task as a behavioral assay of the Pavlovian and instrumental valuation systems.


Subject(s)
Conditioning, Classical , Learning , Male , Female , Humans , Motivation , Magnetic Resonance Imaging , Conditioning, Operant
11.
J Vis Exp ; (196)2023 06 30.
Article in English | MEDLINE | ID: mdl-37458443

ABSTRACT

Models of the central nervous system (CNS) must recapitulate the complex network of interconnected cells found in vivo. The CNS consists primarily of neurons, astrocytes, oligodendrocytes, and microglia. Due to increasing efforts to replace and reduce animal use, a variety of in vitro cell culture systems have been developed to explore innate cell properties, which allow the development of therapeutics for CNS infections and pathologies. Whilst certain research questions can be addressed by human-based cell culture systems, such as (induced) pluripotent stem cells, working with human cells has its own limitations with regard to availability, costs, and ethics. Here, we describe a unique protocol for isolating and culturing cells from embryonic mouse brains. The resulting mixed neural cell cultures mimic several cell populations and interactions found in the brain in vivo. Compared to current equivalent methods, this protocol more closely mimics the characteristics of the brain and also garners more cells, thus allowing for more experimental conditions to be investigated from one pregnant mouse. Further, the protocol is relatively easy and highly reproducible. These cultures have been optimized for use at various scales, including 96-well based high throughput screens, 24-well microscopy analysis, and 6-well cultures for flow cytometry and reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. This culture method is a powerful tool to investigate infection and immunity within the context of some of the complexity of the CNS with the convenience of in vitro methods.


Subject(s)
Astrocytes , Neurons , Animals , Mice , Humans , Cells, Cultured , Neurons/pathology , Astrocytes/physiology , Brain , Cell Culture Techniques , Immunity, Innate
12.
Transl Psychiatry ; 13(1): 185, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37264010

ABSTRACT

Compelling evidence demonstrates that some individuals suffering from major depressive disorder (MDD) exhibit increased levels of inflammation. Most studies focus on inflammation-related proteins, such as serum or plasma C-reactive protein (CRP). However, the immune-related modifications associated with MDD may be not entirely captured by CRP alone. Analysing mRNA gene expression levels, we aimed to identify broader molecular immune-related phenotypes of MDD. We examined 168 individuals from the non-interventional, case-control, BIODEP study, 128 with a diagnosis of MDD and 40 healthy controls. Individuals with MDD were further divided according to serum high-sensitivity (hs)CRP levels (n = 59 with CRP <1, n = 33 with CRP 1-3 and n = 36 with CRP >3 mg/L). We isolated RNA from whole blood and performed gene expression analyses using RT-qPCR. We measured the expression of 16 immune-related candidate genes: A2M, AQP4, CCL2, CXCL12, CRP, FKBP5, IL-1-beta, IL-6, ISG15, MIF, GR, P2RX7, SGK1, STAT1, TNF-alpha and USP18. Nine of the 16 candidate genes were differentially expressed in MDD cases vs. controls, with no differences between CRP-based groups. Only CRP mRNA was clearly associated with serum CRP. In contrast, plasma (proteins) IL-6, IL-7, IL-8, IL-10, IL-12/IL-23p40, IL-16, IL-17A, IFN-gamma and TNF-alpha, and neutrophils counts, were all differentially regulated between CRP-based groups (higher in CRP >3 vs. CRP <1 and/or controls), reflecting the gradient of CRP values. Secondary analyses on MDD individuals and controls with CRP values <1 mg/L (usually interpreted as 'no inflammation') confirmed MDD cases still had significantly different mRNA expression of immune-related genes compared with controls. These findings corroborate an immune-related molecular activation in MDD, which appears to be independent of serum CRP levels. Additional biological mechanisms may then be required to translate this mRNA signature into inflammation at protein and cellular levels. Understanding these mechanisms will help to uncover the true immune abnormalities in depression, opening new paths for diagnosis and treatment.


Subject(s)
Depressive Disorder, Major , Humans , Depressive Disorder, Major/diagnosis , Tumor Necrosis Factor-alpha , Depression , Interleukin-6 , C-Reactive Protein/analysis , Inflammation/genetics , Inflammation/complications , RNA, Messenger/genetics , Gene Expression , Ubiquitin Thiolesterase/genetics
13.
JAMA Psychiatry ; 80(6): 610-620, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37074691

ABSTRACT

Importance: Cognitive impairment in depression is poorly understood. Family history of depression is a potentially useful risk marker for cognitive impairment, facilitating early identification and targeted intervention in those at highest risk, even if they do not themselves have depression. Several research cohorts have emerged recently that enable findings to be compared according to varying depths of family history phenotyping, in some cases also with genetic data, across the life span. Objective: To investigate associations between familial risk of depression and cognitive performance in 4 independent cohorts with varied depth of assessment, using both family history and genetic risk measures. Design, Setting, and Participants: This study used data from the Three Generations at High and Low Risk of Depression Followed Longitudinally (TGS) family study (data collected from 1982 to 2015) and 3 large population cohorts, including the Adolescent Brain Cognitive Development (ABCD) study (data collected from 2016 to 2021), National Longitudinal Study of Adolescent to Adult Health (Add Health; data collected from 1994 to 2018), and UK Biobank (data collected from 2006 to 2022). Children and adults with or without familial risk of depression were included. Cross-sectional analyses were conducted from March to June 2022. Exposures: Family history (across 1 or 2 prior generations) and polygenic risk of depression. Main Outcomes and Measures: Neurocognitive tests at follow-up. Regression models were adjusted for confounders and corrected for multiple comparisons. Results: A total of 57 308 participants were studied, including 87 from TGS (42 [48%] female; mean [SD] age, 19.7 [6.6] years), 10 258 from ABCD (4899 [48%] female; mean [SD] age, 12.0 [0.7] years), 1064 from Add Health (584 [49%] female; mean [SD] age, 37.8 [1.9] years), and 45 899 from UK Biobank (23 605 [51%] female; mean [SD] age, 64.0 [7.7] years). In the younger cohorts (TGS, ABCD, and Add Health), family history of depression was primarily associated with lower performance in the memory domain, and there were indications that this may be partly associated with educational and socioeconomic factors. In the older UK Biobank cohort, there were associations with processing speed, attention, and executive function, with little evidence of education or socioeconomic influences. These associations were evident even in participants who had never been depressed themselves. Effect sizes between familial risk of depression and neurocognitive test performance were largest in TGS; the largest standardized mean differences in primary analyses were -0.55 (95% CI, -1.49 to 0.38) in TGS, -0.09 (95% CI, -0.15 to -0.03) in ABCD, -0.16 (95% CI, -0.31 to -0.01) in Add Health, and -0.10 (95% CI, -0.13 to -0.06) in UK Biobank. Results were generally similar in the polygenic risk score analyses. In UK Biobank, several tasks showed statistically significant associations in the polygenic risk score analysis that were not evident in the family history models. Conclusions and Relevance: In this study, whether assessed by family history or genetic data, depression in prior generations was associated with lower cognitive performance in offspring. There are opportunities to generate hypotheses about how this arises through genetic and environmental determinants, moderators of brain development and brain aging, and potentially modifiable social and lifestyle factors across the life span.


Subject(s)
Depression , Genetic Predisposition to Disease , Adult , Child , Adolescent , Humans , Female , Young Adult , Middle Aged , Male , Longitudinal Studies , Depression/genetics , Genetic Predisposition to Disease/genetics , Cross-Sectional Studies , Cognition
14.
Lancet Rheumatol ; 5(2): e99-e109, 2023 Feb.
Article in English | MEDLINE | ID: mdl-38251542

ABSTRACT

Despite developments in pharmacological treatments, chronic fatigue is an unresolved issue for most people with inflammatory arthritis that severely disrupts their personal and working lives. Fatigue in these patients is not strongly linked with peripheral disease activity but is associated with CNS-derived symptoms such as chronic pain, sleep disturbance, and depression. Therefore, a neurobiological basis should be considered when pursuing novel fatigue-specific therapeutics. In this Review, we focus on clinical imaging biomarkers that map candidate brain regions and are crucial in fatigue pathophysiology. We then evaluate neuromodulation techniques that could affect these candidate brain regions and are potential treatment strategies for fatigue in patients with inflammatory arthritis. We delineate work that is still required for neuroimaging and neuromodulation to eventually become part of a clinical pathway to treat and manage fatigue.


Subject(s)
Arthritis , Chronic Pain , Humans , Brain/diagnostic imaging , Arthritis/complications , Chronic Pain/etiology , Critical Pathways , Brain Mapping
15.
Brain ; 145(11): 4097-4107, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36065116

ABSTRACT

COVID-19 is associated with neurological complications including stroke, delirium and encephalitis. Furthermore, a post-viral syndrome dominated by neuropsychiatric symptoms is common, and is seemingly unrelated to COVID-19 severity. The true frequency and underlying mechanisms of neurological injury are unknown, but exaggerated host inflammatory responses appear to be a key driver of COVID-19 severity. We investigated the dynamics of, and relationship between, serum markers of brain injury [neurofilament light (NfL), glial fibrillary acidic protein (GFAP) and total tau] and markers of dysregulated host response (autoantibody production and cytokine profiles) in 175 patients admitted with COVID-19 and 45 patients with influenza. During hospitalization, sera from patients with COVID-19 demonstrated elevations of NfL and GFAP in a severity-dependent manner, with evidence of ongoing active brain injury at follow-up 4 months later. These biomarkers were associated with elevations of pro-inflammatory cytokines and the presence of autoantibodies to a large number of different antigens. Autoantibodies were commonly seen against lung surfactant proteins but also brain proteins such as myelin associated glycoprotein. Commensurate findings were seen in the influenza cohort. A distinct process characterized by elevation of serum total tau was seen in patients at follow-up, which appeared to be independent of initial disease severity and was not associated with dysregulated immune responses unlike NfL and GFAP. These results demonstrate that brain injury is a common consequence of both COVID-19 and influenza, and is therefore likely to be a feature of severe viral infection more broadly. The brain injury occurs in the context of dysregulation of both innate and adaptive immune responses, with no single pathogenic mechanism clearly responsible.


Subject(s)
Brain Injuries , COVID-19 , Influenza, Human , Humans , Neurofilament Proteins , COVID-19/complications , Biomarkers , Autoantibodies , Immunity
16.
Article in English | MEDLINE | ID: mdl-35606105

ABSTRACT

BACKGROUND: Delirium is an important risk factor for subsequent dementia. However, the field lacks large studies with long-term follow-up of delirium in subjects initially free of dementia to clearly establish clinical trajectories. METHODS: We undertook a retrospective cohort study of all patients over the age of 65 diagnosed with an episode of delirium who were initially dementia free at onset of delirium within National Health Service Greater Glasgow & Clyde between 1996 and 2020 using the Safe Haven database. We estimated the cumulative incidence of dementia accounting for the competing risk of death without a dementia diagnosis. We modelled the effects of age at delirium diagnosis, sex and socioeconomic deprivation on the cause-specific hazard of dementia via cox regression. RESULTS: 12 949 patients with an incident episode of delirium were included and followed up for an average of 741 days. The estimated cumulative incidence of dementia was 31% by 5 years. The estimated cumulative incidence of the competing risk of death without dementia was 49.2% by 5 years. The cause-specific hazard of dementia was increased with higher levels of deprivation and also with advancing age from 65, plateauing and decreasing from age 90. There did not appear to be a relationship with sex. CONCLUSIONS: Our study reinforces the link between delirium and future dementia in a large cohort of patients. It highlights the importance of early recognition of delirium and prevention where possible.

17.
Br J Psychiatry ; : 1-13, 2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35067242

ABSTRACT

BACKGROUND: People presenting with first-episode psychosis (FEP) have heterogenous outcomes. More than 40% fail to achieve symptomatic remission. Accurate prediction of individual outcome in FEP could facilitate early intervention to change the clinical trajectory and improve prognosis. AIMS: We aim to systematically review evidence for prediction models developed for predicting poor outcome in FEP. METHOD: A protocol for this study was published on the International Prospective Register of Systematic Reviews, registration number CRD42019156897. Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidance, we systematically searched six databases from inception to 28 January 2021. We used the Checklist for Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies and the Prediction Model Risk of Bias Assessment Tool to extract and appraise the outcome prediction models. We considered study characteristics, methodology and model performance. RESULTS: Thirteen studies reporting 31 prediction models across a range of clinical outcomes met criteria for inclusion. Eleven studies used logistic regression with clinical and sociodemographic predictor variables. Just two studies were found to be at low risk of bias. Methodological limitations identified included a lack of appropriate validation, small sample sizes, poor handling of missing data and inadequate reporting of calibration and discrimination measures. To date, no model has been applied to clinical practice. CONCLUSIONS: Future prediction studies in psychosis should prioritise methodological rigour and external validation in larger samples. The potential for prediction modelling in FEP is yet to be realised.

18.
Psychol Med ; 52(14): 3289-3296, 2022 10.
Article in English | MEDLINE | ID: mdl-33731235

ABSTRACT

BACKGROUND: Depression and overweight are each associated with abnormal immune system activation. We sought to disentangle the extent to which depressive symptoms and overweight status contributed to increased inflammation and abnormal cortisol levels. METHODS: Participants were recruited through the Wellcome Trust NIMA Consortium. The sample of 216 participants consisted of 69 overweight patients with depression; 35 overweight controls; 55 normal-weight patients with depression and 57 normal-weight controls. Peripheral inflammation was measured as high-sensitivity C-Reactive Protein (hsCRP) in serum. Salivary cortisol was collected at multiple points throughout the day to measure cortisol awakening response and diurnal cortisol levels. RESULTS: Overweight patients with depression had significantly higher hsCRP compared with overweight controls (p = 0.042), normal-weight depressed patients (p < 0.001) and normal-weight controls (p < 0.001), after controlling for age and gender. Multivariable logistic regression showed that comorbid depression and overweight significantly increased the risk of clinically elevated hsCRP levels ⩾3 mg/L (OR 2.44, 1.28-3.94). In a separate multivariable logistic regression model, overweight status contributed most to the risk of having hsCRP levels ⩾3 mg/L (OR 1.52, 0.7-2.41), while depression also contributed a significant risk (OR 1.09, 0.27-2). There were no significant differences between groups in cortisol awakening response and diurnal cortisol levels. CONCLUSION: Comorbid depression and overweight status are associated with increased hsCRP, and the coexistence of these conditions amplified the risk of clinically elevated hsCRP levels. Overweight status contributed most to the risk of clinically elevated hsCRP levels, but depression also contributed to a significant risk. We observed no differences in cortisol levels between groups.


Subject(s)
Hydrocortisone , Overweight , Humans , Overweight/epidemiology , Hydrocortisone/metabolism , C-Reactive Protein/analysis , Depression/epidemiology , Inflammation , Pituitary-Adrenal System/metabolism , Saliva/chemistry , Hypothalamo-Hypophyseal System/metabolism
19.
Neuropsychopharmacology ; 47(2): 564-569, 2022 01.
Article in English | MEDLINE | ID: mdl-34621014

ABSTRACT

Previous studies testing associations between polygenic risk for late-onset Alzheimer's disease (LOAD-PGR) and brain magnetic resonance imaging (MRI) measures have been limited by small samples and inconsistent consideration of potential confounders. This study investigates whether higher LOAD-PGR is associated with differences in structural brain imaging and cognitive values in a relatively large sample of non-demented, generally healthy adults (UK Biobank). Summary statistics were used to create PGR scores for n = 32,790 participants using LDpred. Outcomes included 12 structural MRI volumes and 6 concurrent cognitive measures. Models were adjusted for age, sex, body mass index, genotyping chip, 8 genetic principal components, lifetime smoking, apolipoprotein (APOE) e4 genotype and socioeconomic deprivation. We tested for statistical interactions between APOE e4 allele dose and LOAD-PGR vs. all outcomes. In fully adjusted models, LOAD-PGR was associated with worse fluid intelligence (standardised beta [ß] = -0.080 per LOAD-PGR standard deviation, p = 0.002), matrix completion (ß = -0.102, p = 0.003), smaller left hippocampal total (ß = -0.118, p = 0.002) and body (ß = -0.069, p = 0.002) volumes, but not other hippocampal subdivisions. There were no significant APOE x LOAD-PGR score interactions for any outcomes in fully adjusted models. This is the largest study to date investigating LOAD-PGR and non-demented structural brain MRI and cognition phenotypes. LOAD-PGR was associated with smaller hippocampal volumes and aspects of cognitive ability in healthy adults and could supplement APOE status in risk stratification of cognitive impairment/LOAD.


Subject(s)
Alzheimer Disease , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Apolipoprotein E4/genetics , Biological Specimen Banks , Brain/diagnostic imaging , Brain/pathology , Cognition , Humans , Magnetic Resonance Imaging , United Kingdom
20.
Cell Mol Neurobiol ; 42(8): 2655-2671, 2022 Nov.
Article in English | MEDLINE | ID: mdl-34297254

ABSTRACT

Microglial activation is believed to play a role in many psychiatric and neurodegenerative diseases. Based largely on evidence from other cell types, it is widely thought that MAP kinase (ERK, JNK and p38) signalling pathways contribute strongly to microglial activation following immune stimuli acting on toll-like receptor (TLR) 3 or TLR4. We report here that exposure of SimA9 mouse microglial cell line to immune mimetics stimulating TLR4 (lipopolysaccharide-LPS) or TLR7/8 (resiquimod/R848), results in marked MAP kinase activation, followed by induction of nitric oxide synthase, and various cytokines/chemokines. However, in contrast to TLR4 or TLR7/8 stimulation, very few effects of TLR3 stimulation by poly-inosine/cytidine (polyI:C) were detected. Induction of chemokines/cytokines at the mRNA level by LPS and resiquimod were, in general, only marginally affected by MAP kinase inhibition, and expression of TNF, Ccl2 and Ccl5 mRNAs, along with nitrite production, were enhanced by p38 inhibition in a stimulus-specific manner. Selective JNK inhibition enhanced Ccl2 and Ccl5 release. Many distinct responses to stimulation of TLR4 and TLR7 were observed, with JNK mediating TNF protein induction by the latter but not the former, and suppressing Ccl5 release by the former but not the latter. These data reveal complex modulation by MAP kinases of microglial responses to immune challenge, including a dampening of some responses. They demonstrate that abnormal levels of JNK or p38 signalling in microglial cells will perturb their profile of cytokine and chemokine release, potentially contributing to abnormal inflammatory patterns in CNS disease states.


Subject(s)
Microglia , Toll-Like Receptor 3 , Animals , Chemokines/metabolism , Cytidine/metabolism , Cytidine/pharmacology , Cytokines/metabolism , Immunity , Inosine/metabolism , Inosine/pharmacology , JNK Mitogen-Activated Protein Kinases/metabolism , Lipopolysaccharides/pharmacology , Mice , Microglia/metabolism , Mitogen-Activated Protein Kinases/metabolism , Nitrites/metabolism , RNA, Messenger/metabolism , Toll-Like Receptor 3/metabolism , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 7/metabolism , Toll-Like Receptors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL